Ugrás a tartalomhoz

Pigmentált elváltozások differenciáldiagnosztikája

Remenyik Éva (2011)

Debreceni Egyetem



Matsunaga T, Hieda K, Nikaido O: Wavelength dependent formation of thymine dimers and (6-4) photoproducts in DNA by monochromatic ultraviolet light ranging from 150 to 365 nm. Photochem. Photobiol. 54: 403, 1991.

Mitchell DL, Jen J, Cleaver JE: Sequence specificity of cyclobutane pyrimidine dimers in DNA treated with solar (ultraviolet B) radiation. Nucleic Acids Res 20: 225, 1992.

Douki T, Court M, Sauvaigo S et al.: Formation of the main UV-induced thymine dimeric lesions within isolated and cellular DNA as measured by high performance liquid chromatography-tandem mass spectrometry. J. Biol. Chem 275: 11678, 2000.

Freeman SE, Gange RW, Sutherland JC et al.: Production of pyrimidine dimers in DNA of human skin exposed in situ to UVA radiation. J. Invest. Dermatol. 88: 430, 1987.

Hönigsmann H, Jaenicke KF, Brenner W et al.: Unscheduled DNA synthesis in normal human skin after single and combined doses of UV-A, UV-B and UV-A with methoxsalen (PUVA). Br. J. Dermatol. 105: 491, 1981.

Cadet J, Sage E, Douki T: Ultraviolet radiation-mediated damage to cellular DNA. Mutat. Res. 571: 3, 2005.

Mitchell DL, Nairn RS: The (6-4) photoproduct and human skin cancer. Photodermatology 5:61, 1988.

Strickland PT: Distribution of thymine dimers induced in mouse skin by ultraviolet radiation. Photodermatology 5:1, 1988.

Levine L, Seaman E, Hammerschlag E et al.: Antibodies to photoproducts of deoxyribonucleic acids irradiated with ultraviolet light. Science 153: 1666, 1966.

Tan EM: Antibodies to deoxyribonucleic acid irradiated with ultraviolet light: detection by precipitins and immunofluorescence. Science 161: 1353, 1968.

Tan EM, Stoughton RB: UV-light induced damage to deoxyribonucleic acid in human skin. J. Invest. Dermatol. 52: 537, 1969.

Davis P: Antibodies to UV DNA and photosensitivity. Br. J. Dermatol. 97: 197, 1977.

Slor H, Nivy S, Cleaver JE et al.: Anti-ultraviolet-irradiated DNA antibodies in xeroderma pigmentosum patients. In:„DNA repair mechanisms" symp., Bécs, 1975. 5.o.

Sutherland BM, Harber LC, Kochevar IE: Pyrimidine dimer formation and repair in human skin. Cancer Res. 40:3181, 1980.

D’Ambrosio SM, Slazinski L, Whetstone JW et al.: Excision repair of UV-induced pyrimidine dimers in human skin in vivo. J. Invest. Dermatol. 77: 311, 1981.

Chadwick CA, Potten CS, Nikaido O et al.: The detection of cyclobutane thymine dimers, (6-4) photolesions and the Dewar photoisomers in sections of UV-irradiated human skin using specific antibodies, and the demonstration of depth penetration effects. J. Photochem. Photobiol. B: Biol. 28: 163, 1995.

Young AR, Chadwick CA, Harrison GI et al.: The in situ repair kinetics of epidermal thymine dimers and 6-4 photoproducts in human skin types I and II. J. Invest. Dermatol. 106: 1307, 1996.

Reusch MK, Meager K, Leadon SA et al.: Comparative removal of pyrimidine dimers from human epidermal keratinocytes in vivo and in vitro. J. Invest. Dermatol. 91: 349, 1988.

Zdzienicka: cit. Young AR, Chadwick CA, Harrison GI et al.: The in situ repair kinetics of epidermal thymine dimers and 6-4 photoproducts in human skin types I and II. J. Invest. Dermatol. 106: 1307, 1996.

Nishigori C: Cellular aspects of photocarcinogenesis. Photochem. Photobiol. Sci. 5: 208, 2006.

Hanawalt PC, Setlow RB: Molecular mechanisms for repair of DNA. Vol. V. Part B. Plenum Press, New York, London, 1975. 422. o.

Evans RG, Norman A: Radiation stimulated incorporation of thymidine into the DNA of human lymphocytes. Nature 217: 455, 1968.

Sutherland BM: Photoreactivating enzyme from human leukocytes. Nature 248: 109, 1974.

Lehman AR, Kirk-Bell S, Arlett CF et al.: Xeroderma pigmentosum cells with normal levels of excision repair have a defect in DNA synthesis after UV-irradiation. Proc. Nat. Acad. Sci. 2: 219, 1975.

Moriwaki SI, Kraemer KH: Xeroderma pigmentosum – bridging a gap between clinic and laboratory. Photodermatol. Photoimmunol. Photomed. 17: 47, 2001.

Berneburg M, Lehmann AR: Xeroderma pigmentosum and related disorders: defects in DNA repair and transcription. In: Advances in Genetics. Acad.Press, 43: 71, 2001.

Rasmussen RE, Painter RB: Evidence for repair of ultra-violet damaged deoxyribonucleic acid in cultured mammalian cells. Nature 203: 1360, 1964.

Setlow RB, Swenson PA, Carrier WL: Thymine dimers and inhibition of DNA synthesis by ultraviolet irradiation of cells. Science 142: 1464, 1963.

Cleaver JE: Defective repair replication of DNA in xeroderma pigmentosum. Nature 218: 652, 1968.

Smith KC, Hanawalt PC: Molecular photobiology. Acad. Press, New York, London, 1969. 131.o.

Friedberg EC, Ehmann UK, Williams JI: Human diseases associated with defective DNA repair. In: Adv. Rad. Biol., Acad. Press, New York, 1979. 8: 85.

Fischer E, Thielmann HW, Neundörfer B et al.: Xeroderma pigmentosum patients from Germany: clinical symptoms and DNA repair characteristics. Arch. Dermatol. Res. 274: 229, 1982.

Balajee AS, Bohr VA: Genomic heterogeneity of nucleotide excision repair. Gene 250: 15, 2000.

Queille S, Drougard C, Sarasin A et al.: Effects of XPD mutations on ultraviolet-induced apoptosis in relation to skin cancer-proneness in repair-deficient syndromes. J. Invest. Dermatol. 117: 1162, 2001.

Kraemer KH, Levy DD, Parris CN et al.: Xeroderma pigmentosum and related disorders: examining the linkage between defective DNA repair and cancer. J. Invest. Dermatol. 103: 96, 1994.

Otto AI, Riou L, Marionett C et al.: Differential behaviors toward ultraviolet A and B radiation of fibroblasts and keratinocytes from normal and DNA-repair-deficient patients. Cancer Res. 59: 1212, 1999.

Horkay I, Varga L, Altmann H et al.: DNA repair and photosensitivity in dermatology. In: Light in photobiology and medicine. Vol.2. Ed.: Douglas RH et al., Plenum Press, New York, 1991. 327.

Mullenders LH, van Hazekamp Dokkum AM, Kalle WH et al.: UV-induced photolesions, their repair and mutations. Mutat. Res. 299: 271, 1993.

Hall PA, McKee PH, Menage HD et al.: High levels of p53 protein in UV-irradiated normal human skin. Oncogene 8: 203, 1993.

Hunter T, Pines J: Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell 79: 573, 1994.

Epstein WL, Fukuyama K, Epstein JH: Early effects of UV-light on DNA synthesis in human skin in vivo. Arch. Dermatol. 100: 84, 1969.

Brash DE, Hart RW: DNA damage and repair in vivo. J. Environ. Pathol.Toxic. 2: 79, 1978.

Horkay I, Varga L, Tamási P et al.: Repair of DNA damage in light sensitive human skin diseases. Arch. Derm. Res. 263: 307, 1978.

Horkay I, Varga L, Tamási P: Effects of UV-light on DNA synthesis in photodermatoses. In: Fortschritte der Onkologie. IV. Akad.Verlag, Berlin, 1979.151. (a)

Horkay I: A polymorph fény-exanthema patomechanizmusa és kezelése. Kandidátusi értekezés, Debrecen, 1979. (b)

Lewensohn R, Ringborg U: Measurement of DNA repair synthesis induced by ultraviolet radiation. Photodermatology 2: 401, 1985.

Tuschl H, Altmann H: Unscheduled DNA synthesis in lymphocytes of rheumatoid arthritis patients and spleen cells of rats with experimentally induced arthritis. Med. Biol. 54: 327, 1976. (KD

Horkay I, Tamási P, Csongor J: UV-light induced DNA damage and repair in lymphocytes in photodermatoses. Acta Derm. Venereol. 53: 105, 1973.

Jung EG, Bohnert E: Photobiology of ultraviolet radiation-induced DNA damage. In: Photoimmunology. Eds. Krutmann J, Elmets CA. Blackwell Science, New York, 1995. 34.o.

Collins A, Dusinska M, Franklin M et al.:Comet assay in human biomonitoring studies: reliability, validation, and applications. Environ. Mol. Mutagen. 30:139, 1997.

Tice RR, Agurell E, Anderson D et al.: Single cell gel/comet assay: guidelines for in vitro and invivo genetic toxicology testing. Envir. Mol. Mutagen. 35: 206, 2000.

Lehmann J, Pollet D, Peker S et al.: Kinetics of DNA strand breaks and protection by antioxidants in UVA- or UVB-irradiated HaCaT keratinocytes using the single cell gel electrophoresis assay. Mutat.Res. 407:97, 1998.

Alapetite C, Wachter T, Sage E et al.: Use of the alkaline comet assay to detect DNA repair deficiencies in human fibroblasts exposed to UVC, UVB, UVA and gamma-rays. Int. J. Radiat. Biol. 69:359, 1996.

Remenyik E, Varga Cs, Horkay I et al.: Comet assay to study UV-induced DNA damage. In: Biological effects of light. 1998. Eds.: Holick MF, Jung EG. Kluwer Acad. Publ., Boston/London/Dordrecht. 1998. 41.o.

Emri G, Remenyik E, Horkay I et al.: DNA-damage during photo(chemo)therapy studied by comet assay. Neoplasma 46, suppl., 106, 1999.

Young AR: The molecular and genetic effects of ultraviolet radiation exposure on skin cells. In: Photodermatology. Ed.: Hawk JLM, 1999. Arnold, London, 31.o.

Roza L, Vermeulen W, Bergen-Henegouwen JB et al.: Effects of microinjected photoreactivating enzyme on thymine dimer removal and DNA repair synthesis in normal human and xeroderma pigmentosum fibroblasts. Cancer Res. 50: 1905, 1990.

Stege H, Roza L, Vink AA et al.: Enzyme plus light therapy to repair DNA damage in ultraviolet-B-irradiated human skin. Proc. Nat. Acad. Sci. 97:1790, 2000.

Maity A, Kao GD, Muschel RJ et al: Potential molecular targets for manipulating the radiation response. Int. J. Radiation Oncology Biol. Phys. 37: 639, 1997.

Jung EG, Schnyder UW: Xeroderma pigmentosum und pigmentiertes Xerodermoid. Klinische und molekularbiologische Untersuchungen. Schweiz. Med. Wochenschr. 100:1718, 1970.

Jung EG: Das pigmentierte Xerodermoid. Ein Defekt der Kombinations-Erholung von UV-Schaden. Arch. Derm. Forsch. 241:33, 1971.

Wondrak GT, Jacobson MK, Jacobson EL: Endogenous UVA-photosensitizers: mediator of skin damage and novel targets for skin photoprotection. Photochem. Photobiol. Sci. 5:215, 2006.

Reelfs O, Tyrrel RM, Pourzand C: Ultraviolet A radiation-induced immediate iron release is a key modulator of the activation of NF-kappaB in human skin fibroblasts. J. Invest. Dermatol. 122: 1440, 2004.

Sage E: DNA photolesions and mutagenic consequences. In: Photodermatology-photobiology. Ed.: Horkay I., InterCorp-97 Ltd., Debrecen, 1997, 9.o.

Emri G, Horkay I, Remenyik É: Szabad gyökök szerepe az ultraibolya fény okozta bőrkárosodásokban. Orv. Hetil. 147: 731, 2006.

Rosen JE, Prahalad AK, Williams GM: 8-oxodeoxyguanosine formation in the DNA of cultured cells after exposure to H2O2 alone or with UVB or UVA irradiation. Photochem. Photobiol. 64: 117, 1996.

Cadet J, Douki K, Gasparutto D et al.: Oxydative damage to DNA formation , measurement and biochemical features. Mutat. Res. 531: 5, 2003.

Peak JG, Peak M: Comparison of initial yields of DNA-to-protein crosslinks and single-strand breaks induced in cultured human cells by far- and near-ultraviolet light, blue light and X-rays. Mutat. Res. 246: 187, 1991.

Young AR: Chromophores in human skin. Phys. Med. Biol. 42:789, 1997.

De Laat A, van Tilburg M, van der Leun JC et al.: Cell cycle kinetics following UVA radiation in comparison to UVB and UVC irradiation. Photochem. Photobiol. 63:492, 1996.

Banrud H, Moan J, Berg K: Early induction of binucleated cells by ultraviolet A (UVA) radiation: possible role of microfilaments. Photochem. Photobiol. 70:199, 1999.

Emri G, Wenczl E, van Erp P, Horkay I et al.: Low doses of UVB or UVA induce chromosomal aberrations in cultured human skin cells. J. Invest. Dermatol. 115: 435, 2000.

Kielbassa C, Roza L, Epe B: Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis 18:811, 1997.