Ugrás a tartalomhoz

Topográfia 1., Térképészeti alapfogalmak

Mélykúti Gábor (2010)

Nyugat-magyarországi Egyetem

1.3 Térképkészítés alapjai

1.3 Térképkészítés alapjai

A térképekre az egyes rajzi elemek mérések alapján kerülnek fel. Mérésekkel határozzuk meg az egyes terepi objektumok helyét, számítjuk a koordinátáit egy célszerűen választott koordináta rendszerben, és ennek segítségével szerkesztjük fel a térképre a térkép koordináta rendszerében. A mérések során egy időben sok pont adatait határozzuk meg, a pontok és a hozzájuk tartozó adatok azonosítására pontszámokat használunk. A pontszámozás önmagában még nem elég információ ahhoz, hogy a térképet megszerkesszük, hiszen az csak egy pontot azonosít. A terepen a pontok között kapcsolatok vannak, csak akkor kapunk értelmes, jól használható térképet, ha a terepen összetartozó pontok, és a nekik megfelelő a térképi pontok kapcsolata azonos. A pontok kapcsolatait a terepen a mérésekkel egy időben, szabadkézzel készített vázlaton (manuálé) rögzíthetjük. A rögzített mérési eredmények, és a vázlat együttes használatával lehet később a térképet megszerkeszteni.

A mérési eredmények feldolgozása után a számítások eredményeinek segítségével szerkesztjük meg a térképet. Ez így nagyon egyszerűnek hangzik, de ezeket a méréseket és számításokat részleteiben később több tantárgy (modul) keretében lehet majd elsajátítani (pl. Geodézia, Alappontmeghatározás, Nagyméretarányú felmérések, Fotogrammetria, stb.). Most két alapvető mérési módszer elvét tárgyaljuk. Az egyik a derékszögű koordinátamérés, a másik a poláris koordinátamérés. Mindkét eljárás feltételezi, hogy már rendelkezünk alappontokkal. Az alappontok ismert pontok, ami azt jelenti, hogy a terepen be tudjuk őket azonosítani (meg vannak jelölve) és ismertek a koordinátái egy derékszögű koordináta rendszerben. Az alappontok meghatározása külön munkafázisban, a részletes felmérést megelőzően történik. Ezekre az ismert pontokra támaszkodva, további ún. részletpontok (pl. épületsarok, kerítés, stb.) koordinátáit mérések segítségével meg tudjuk határozni.

1.3.1 Derékszögű koordináta mérés elve

Tételezzük fel, hogy adva van két alappont (az ábrán S1, S2) és meg szeretnénk határozni a P új pont helyzetét. Kössük össze az S1-S2 pontot, nevezzük ezt alapvonalnak. A P pontból állítsunk merőlegest erre az alapvonalra. Mérjük meg a P pont talppontjának távolságát az S1 alapponttól, majd mérjük meg a talppont (alapvonal) és a P pont távolságát. E két mennyiség a P pont derékszögű koordinátái (az S1 – S2 egyenes és az S1 kezdőpont által meghatározott derékszögű koordináta rendszerben) és ezek ismeretében ki tudjuk számítani, vagy meg tudjuk szerkeszteni a P pont helyét. Az alapvonalon mért távolság az abszcissza, a rá merőleges távolság az ordináta.

1-1. ábra Derékszögű koordináta mérés elve

1.3.2 Poláris koordináta mérés elve

Tételezzük fel, hogy adva van az A és B két alappont, és meg szeretnénk határozni a P új pont helyzetét. Mérjük meg az A pontban egy ismert B pont felé menő irány és az ismeretlen P pont felé menő irány által (a vízszintes síkban) közbezárt szöget, majd mérjük meg az A pont és a P pont közötti (vízszintes) távolságot. E két mennyiség a P pont poláris koordinátái, és ennek ismertében számítani, vagy szerkeszteni tudjuk a P pont helyét.

1-2. ábra Poláris koordináta mérés elve

1.3.3 Mérés, a leolvasás részei

Méréskor mindig egy összehasonlítást végzünk. Van a mérendő mennyiségünk, és van egy etalonunk, amivel ezt a mérendő mennyiséget összehasonlítjuk. Például súlyméréskor a mérleg egyik serpenyőjébe tesszük a mérendő tárgyat, a másik serpenyőbe az „etalonokat”, a különböző súlyú, előre legyártott, és „hitelesített” ismert tömegű „tárgyakat” (a súlyokat). Méréskor a két serpenyő tartalmát hasonlítjuk össze, és a legjobb egyezőség esetén megállapítjuk a mérendő tárgy súlyát úgy, hogy összeszámláljuk a másik serpenyőbe tett ismert tömegű súlyokat.

Távolság, vagy szögmérés esetén is hasonlóképpen járunk el.

1-3. ábra Mérendő t távolság összehasonlítása egy etalonnal

Az etalon osztásain egy konkrét érték meghatározását leolvasásnak nevezzük. Az A-B pontok közé eső mérendő t távolságunk mellé helyezzük az etalonunkat (vonalzó, mérőszalag, stb.). Az A pontot illesszük az etalon kezdő osztása mellé, és a t távolság B végpontját vetítsük rá az etalonra. A távolság B végpontját, melynek helyét a beosztáson meg kell határozni, általánosságban indexnek nevezzük. Ez a pont általában mindig két osztás közé esik. A távolság leolvasása az etalonon két részből áll. A leolvasás első része az a távolság, amely a beosztás kezdő vonása és az indexet közvetlenül megelőző beosztás között van, ez a főleolvasás (F). A leolvasás másik része az a távolság, mely az indexet közvetlenül megelőző beosztás és az index között van, ez a csonka leolvasás (cs). A csonkaleolvasást becsléssel állapítjuk meg, mely műveletet egy segédbeosztással (pl. nóniusz), vagy segédberendezéssel (leolvasó mikroszkóp) segíthetünk, pontosabbá tehetünk.

1.3.3.1 A nóniusz

A nóniusz egy olyan segédbeosztás, mely a csonkaleolvasást pontosabbá teszi. Tulajdonságai:

  1. a nóniusz beosztás legkisebb része (b) a főbeosztás legkisebb részénél (a) kisebb vagy nagyobb, de azzal semmi esetre sem azonos.

  2. a nóniusz beosztás legkisebb osztórészének egész számú többszöröse a főbeosztás legkisebb osztórészének egész számú többszörösével egyenlő.

n * b = m * a, (n és m pozitív egész számok pl. 10*b = 9*a)

  1. a leolvasáshoz szükséges indexet zérussal jelöljük.

1-4. ábra Nóniusz

Ha a nóniusz indexét és a főbeosztás egy osztásvonását egy egyenes mentén összeillesztjük, akkor a nóniusz utolsó vonása is egybeesik a főbeosztás valamelyik osztásvonalával.

A nóniusz legkisebb osztásrésze és a főbeosztás legkisebb osztásrésze közötti különbség:

n * b = m * a ➔ b = a*m/n

a-b = a- – a*m/n = a*(1-m/n) = a*(n/n - m/n) = a* (n – m) / n

pl.: m=10; n=9; ➔ a-b = a * (10-9) / 10 = a/10

1-5. ábra Csonkaleolvasás nóniusz segítségével

Először a főleolvasást (F) határozzuk meg úgy, hogy megállapítjuk a nóniusz indexét (0 osztását) közvetlenül megelőző főbeosztást értékét. Tételezzük fel, hogy a főbeosztáson egy osztásköz 1 mm-nek felel meg.

Példánkban a főbeosztás értéke 4, azaz F = 4 * 1 mm = 4 mm

Ez után megállapítjuk, hogy hányadik nóniusz-vonás esik legjobban egy egyenesbe a főbeosztás-vonások valamelyikével, és kiszámoljuk a csonka leolvasás értéket (cs).

A példában a nóniusz ötödik vonása esik legjobban egybe a főbeosztás egyik vonásával, a csonka beosztás értéke tehát cs = 5*(a-b) = 5*0,1 mm = 0,5 mm.

A főleolvasás és a csonkaleolvasás értékeit összeadjuk, a mért távolság tehát:

t = F + cs =4 mm + 0,5 mm = 4,5 mm.

1.3.3.2 Majzik-féle háromszögpár

A Majzik-féle háromszögpár két egybevágó, egyenlő szárú, derékszögű háromszögvonalzóból áll. Az egyik az alapvonalzó, melynek az átfogóján a térkép méretarányának megfelelő távolság osztásoknak a √2-szöröse található. A másik a mozgó, vagy segéd vonalzó, melynek a két befogója lecsapott élű, ezek mentén lehet pontosan vonalat húzni, és az átfogóján nóniusz beosztás található. A Majzik-féle háromszögpárral a térképen távolságot lehet mérni, vagy távolságot lehet felszerkeszteni, úgy, hogy a két vonalzót az átfogóik mentén egymás mellett elcsúsztatjuk. Ha a mozgó vonalzó befogóit a térképi koordináta rendszerrel párhuzamosra állítjuk, akkor a térképre a mért pontok derékszögű koordinátáit tudjuk felszerkeszteni.

Az ábrán a mozgó (szaggatott vonallal rajzolt) háromszög befogóit a térképi koordináta rendszer XY tengelyeivel párhuzamosra állítottuk. Ekkor a mozgó háromszög X tengellyel párhuzamos befogójának elmozdulásával két pont ΔY koordináta különbségét lehet meghatározni.

1-6. ábra Távolság meghatározás Majzik-féle háromszögpárral

Először a mozgó vonalzó (hosszú szaggatott vonal) X tengellyel párhuzamos befogóját az A ponthoz illesztjük, az alapvonalzót úgy állítjuk, hogy az átfogók mentén a két osztás 0 osztása egybe essen. Ezután az alapvonalzót rögzítjük és a mozgó vonalzót az átfogók mentén addig mozgatjuk, amíg az X tengellyel párhuzamos befogója a B pontra nem illeszkedik (rövid szaggatott vonal). Ekkor az átfogókon elhelyezett beosztások segítségével közvetlenül az A és B pontok ΔY koordináta különbségét olvashatjuk le. (Az ábrán ez 17,7 mm. A √2-es szorzóval nem kell foglalkoznunk, mert a befogók ΔY elmozdulása esetén az átfogók mentén az elmozdulás értéke √2* ΔY, és az átfogón elhelyezett beosztás is a kívánt méretek √2-szöröse.)

1.3.4 Mérési jegyzet, mérési vázlat készítése

1.3.4.1 Mérési jegyzet (manuálé) készítése

A terepen a méréseket "mérési jegyzeten" (manuálén) tüntetjük fel. A mérési jegyzetet ceruzával, szabad kézzel alakhelyesen kell rajzolni. A mérési jegyzeten nem ragaszkodunk a méretarányhoz, elsősorban az olvashatóságra kell törekedni. A mérési jegyzetet olyan áttekinthetően és részletesen kell elkészíteni, hogy a térképezéskor a bemérés minden mozzanata fennakadás nélkül követhető legyen és segítségével bárki meg tudja szerkeszteni a terület térképét.

A mérési jegyzet tartalma:

  • minden lapra fel kell írni a munkaterület nevét, az északi irányt, a mérési jegyzet jelét és a mérés időpontját, a mérés időpontját és a készítő nevét;

  • fel kell tüntetni a meghatározás alapjául szolgáló alap- vagy kisalappontok helyét és azonosítóit;

  • a felmért tereptárgyak alakhelyes alaprajzát, általában nagyobb méretarányban, mint amiben majd a térkép készülni fog;

  • a tereptárgyak egyedi azonosítóit, jellemzőit (pl. házszám, út burkolata, fa fajtája, oszlop típusa, kerítés típusa, stb.);

  • kiegészítő és ellenőrző méreteket (pl. épület körbe mérés, szomszédos épületek sarkai közötti távolság, stb.).

Derékszögű koordináta mérés esetén tartalmazza továbbá:

  • az alap és kisalappontok között kialakított mérési vonalakat;

  • a bemért részletpontok abszcissza és ordináta méreteit jól olvasható számokkal mindenkor úgy kell beírni, hogy hovatartozásuk és számszerű értékük kétséget kizáróan megállapítható legyen;

  • a mérés kezdőpontját és irányát nyíllal kell megjelölni, az ordinátát jelző pontozott vonal elé - a mérési vonalnak arra az oldalára, amelyre a részletpont esik - a merőlegesség jelzésére jelet kell tenni;

  • a bemért részletpont talpponti méretét (abszcissza) a mérési vonalra, azzal párhuzamosan, a mérési irány szerint a merőleges (ordináta) vonal elé írjuk, feltüntetve a folytatólagos méret (-) jelét;

  • a bemért részletpont mérési vonalra merőleges (ordináta) méretét az ordináta vonallal párhuzamosan, a mérési irány szerint a elé írjuk;

  • a mérési vonalon a záró méretet zárójelbe tesszük;

Poláris részletmérés esetén a manuálé tartalmazza még:

  • a bemért részletpontok pontszámát, a mérési jegyzőkönyvvel (regisztrátummal) szigorú összhangban.

A mérési jegyzeteket szelvényenként, munkaterületenként össze kell fűzni. Az eredeti mérési jegyzetekről tisztázatot készíteni tilos.

1.3.4.2 Mérési vázlatok készítése

A mérési vázlatot a derékszögű koordináta mérések esetében a helyszínen készült (eredeti) mérési jegyzetekből készítjük. A mérési vázlatot általában már ugyanabban a méretarányban kell készíteni, mint majd a térképet, a mérési eredmények felhasználásával, de nem szigorúan pontos szerkesztéssel. A mérési vázlat fekete tussal készül, tartalmazza azokat az információkat, melyeket a mérési jegyzetnél ismertettünk.

1-7. ábra Mérési vázlat részlete

1.3.5 Kézi rajzolás eszközei

1.3.5.1 Ceruzák

A XIV. és XV. században írásra ón és ólom keverékéből készült rudacskákat használtak, innen a német "Bleistift" elnevezés. A mai ceruza ólmot nem tartalmaz, mert a borrowdalei grafit feltárása után már a XVI. század közepén megjelentek a grafitból faragott rudak. Később vékonyabb rudacskákat faragtak, melyeket a törés veszedelme ellen faköpennyel védtek. A fellendülő ceruzaipar annyi grafitot igényelt, hogy e szükségletet a bányák nem tudták fedezni. Ezért megpróbálták a grafithulladék felhasználását is és azt valamely alkalmas kötőanyag segítségével rudakká igyekeztek formálni. Ez azonban csak akkor sikerült, mikor 1795-ben agyagadalék alkalmazására tértek át. A finomra őrölt grafitot ugyancsak őrölt agyaggal keverték és formálás után kiégették.

A ceruzát alkotó fahüvely is igen lényeges kellék. A parányi fa rudak vetemedése károsan befolyásolja a ceruza használhatóságát, ilyenkor észrevétlenül eltörik a bél és csak a hegyezésnél derül ki a termék rossz minősége. Nemesítéssel és impregnálással sikerült a hársfából és égerfából, egyes fenyőkből igen jól használható ceruzahüvelyeket gyártani. A nemesített fából gyártott ceruza burkolata apró szabálytalan forgács helyett, hosszú szalagként válik el a hegyezőben. Ma a legigényesebb gyárak kaliforniai fát használnak, mert ezek minden igényt kielégítenek.

1-1. táblázat - Ceruzák keménysége és alkalmazásuk

jel

keménység

alkalmazás

6B, 5B, 4B

igen puha

vázoláshoz rajzlapokon

3B, 2B

puha

rajzkihúzáshoz rajzlapokon

B, HB, F

átmeneti keménységű

jegyzetkészítéshez, kihúzáshoz pauszpapíron

H, 2H, 3H, 4H

kemény

szerkesztéshez rajzlapokon

5H, 6H

nagyon kemény

szerkesztéshez pauszpapíron


A mai ceruza 200 év előtti ősétől miben sem különbözik és a ma is fennálló Faber- és Hardtmuth-féle gyárak már akkor léteztek. A ceruza és a grafit történetéről további részletek itt olvashatók: Finály,1948, Lengyel, 1940, KeS Trade.

Az agyagtartalmú grafitbél a papíron a tiszta grafit fémes nyomát felülmúló szürkés-fekete nyomot hagy, amely a papíron jól tapad. A két összetevő mennyiségének viszonya szabja meg a ceruza keménységét. A ceruzában a grafit a festék szerepét tölti be. A burkolaton a grafitbél keménységi fokát tüntetik fel.

A rajzoláshoz a táblázatban a vastagított jelű ceruzákat használjuk, megfelelő előkészítés után. A faburkolatot éles késsel 20-30 mm hosszan szabályos kúp alakúra faragjuk. A grafitbelet legalább 6 mm hosszan megtisztítjuk a fától. A grafithegyet vékony, ragasztott, finom csiszolópapíron hegyezzük meg. Szerkesztéshez a keményceruzát tűhegyesre, kihúzáshoz a puhaceruzát a vonalvastagságnak megfelelő méretűre csiszoljuk. Amikor ceruzával írunk, akkor a dörzsölés következtében a papír felületéhez tapad a szilárd írószernek kisebb-nagyobb része, a papír és a ceruza minőségétől függően.

1-8. ábra Helytelen és helyes ceruza hegyezés

1.3.5.2 A tus, a tinta

A tinta őse a kínai tus, melyet a kínai írásjelek írására (rajzolására, festésére) használtak. Az egykori leírás szerint fenyőfaszurokból és szezámolajból előállított lámpakoromból készül az igazi kínai tus. A tust száraz formában, rudakban, lepényekben tárolták, használat előtt, kis érdes felületű tálkában, vízzel kellett dörzsöléssel hígítani a kívánt mértékre. Rajzeszköze: ecset, rajztoll, tuskihúzó, redisztoll, graphos, csőtoll, „Rotring”. (Finály, 1948) Az ecsetet, rajztollat használat közben mártogatni kellett, a tuskihúzóba, redisztollba, graphosba már néhány csepp tust lehetett tölteni, a Rotring pedig először egy csőtoll hegyű töltőtoll volt (egy piros gyűrűvel „rotring”-el a szárán), majd ebből alakult ki a különböző vastagságú rajztoll rendszer.

1-9. ábra tuskihúzó, redisztoll, graphos

1-10. ábra graphos készlet

1-11. ábra csőtoll, Rotring

1-12. ábra Rotring készlet

1.3.5.3 Karcolás

Finomabb, vékonyabb, egyenletes vastagságú vonalak rajzolásához fejlesztették ki a karcolási eljárást. Műanyag fóliára speciális festékbevonatot vittek fel, abba kemény, éles késekkel karcolták bele a rajzot. Ez a gyakorlatban is igen előnyös volt, hiszen nem mázolódott el a rajz figyelmetlenség esetén, és a hibás vonalak is könnyen javíthatók voltak. A rajz hibás részét újra le lehetett festeni, és száradás után ismét karcolni lehetett bele. A javítást a végső rajzon nem lehetett észrevenni. A karcolás után speciális, a műanyagon megmaradó tussal kenték le a rajzot, amely csak ott fogta meg az alaplapot, ahol a védőréteget lekarcolták, lekaparták róla. A karcréteg eltávolítása után tiszta éles rajz maradt vissza. Ezt a rajzot – hiszen átlátszó alapanyagra készült – átvilágítással is könnyen másolni lehetett. Előnyös volt azért is, mert a műanyag fóliák mérettartóbbak voltak, mint a rajzpapírok. A mérettartóság a térképek estében igen fontos szempont volt. A karcolási eljárást már a XIX. század végén kidolgozták, de Magyarországon csak 1960-as éveket követően terjedt el. A karcoláshoz számtalan célszerszámot, metszőkést, sablont, stb. fejlesztettek ki. Az ábrán egy nagyítóval is ellátott, cserélhető késtartóval ellátott karcoló szerszám látható. Ezt két kézzel lehetett nagyon pontosan a kívánt vonalon végigvezetni.

1-13. ábra Nagyítóval ellátott karceszköz

1.3.6 Rajzhordozó eszközök

1.3.6.1 A papír

A papír növényi rostokból álló, vékony hajlítható lemez. A rajzpapírtól elvárjuk, hogy legyen mérettartó, tartós, javítás, kaparás esetén ne nagyon bolyhosodjon. Lehetőleg famentes és jól enyvezett legyen, hogy kellően sima legyen a felülete és ne fusson rajta a tinta, vagy a tus.

A papír ősét a papiruszt Egyiptomban már mintegy 4,5 ezer évvel ezelőtt ismerték. A növényi rostokból vagy textilhulladékból készített papír a kínaiak titka volt az időszámításunk kezdete óta (lehet, hogy korábban, de ekkor vannak az első írásos emlékek) egészen a VII. századig. Kalmár P. (2003).

1-2. táblázat - Papír típusok gramm/m2 függvényében

gramm/m2

megnevezés

10-35

tissue paper selyempapír

35-70

könnyebb írólap

70-100

közepes írólap

100-120

cardstock nehéz írólap / könnyű karton

120-150

karton

150-200

nagy karton (rajzlap)

200 <

szupersúlyos karton


A térképrajzolásnál oly fontos mérettartóságot – különösen terepi körülmények között – azzal lehetett fokozni, hogy egy fém lap két oldalára ugyanolyan minőségű papírt ragasztottak fel. Azért kellett mindkét oldalra ugyanazt a drága rajzpapírt ragasztani, mert így a hőmérséklet és páratartalom változás hatására a lemez nem hajlott meg, hiszen a fémlemezt mindkét oldalról ugyanakkora mértékű erőhatás érte. Ez volt az ún. fémbetétes rajzlap.

A papírt a kereskedelem ívben forgalmazza. Egy ív 1 m2 felületű papír. 1 ív tömegétől függően különböző minőségű papírokat különböztetünk meg. Íráshoz, számítógépes nyomtatáshoz általában a „közepes írólap”, műszaki rajzok készítéséhez a „nagy karton” minőséget (vastagságot) használjuk.

1.3.6.2 Műanyag fóliák

A vegyipar fejlődésével a műanyagok a térképészetben is szerepet kaptak az 1970-es évektől. A hőmérséklet és páratartalom változás hatására méretét nagymértékben változtató papír helyett egyre gyakrabban alkalmazták a sokkal mérettartóbb, strapabíróbb műanyag fóliákat térképek rajzolásához. A műanyag fóliákhoz speciális tusokat fejlesztettek, amelyek nem peregtek le a fólia rideg felületéről. Egyaránt alkalmasak tisztázati térképek készítésére, rajzi másolásra, fényérzékeny réteggel való érzékenyítésre, karcréteggel való bevonásra, és nyomatkészítésre. A fóliák fontos tulajdonsága még az átlátszóság, a rábocsátott fény 92%-át átengedi. A kartográfiában alkalmazott technikai eljárások megkívánják, hogy különböző felületű fóliák készüljenek. Ennek megfelelően fényes-fényes, fényes-matt és matt-matt felületű fóliák készülnek.

1.3.6.3 A pausz papír (oleáta)

A pausz papír, egy áttetsző másolópapír. A nyers pausz papír 100% cellulózból készül. Az adalék anyagok csökkentik az átlátszóságát. A műszaki gyakorlatban (térképészet, építészet, műszaki rajz, stb.) elsősorban rajzok átmásolására ill. fedvények készítésére használták. Oleátaként nagy áttetszőképességű műanyag fóliát is lehet alkalmazni. Több rajzot, réteget egymásra helyezve, több különböző rajzi információt lehetett így egymásra vetíteni.

1.3.6.4 Papírméret

A papír méretek szabványosítása már az 1920-as években megszületett (DIN 476), de igazán csak a másológépek elterjedésével vált igazán fontossá. Döntően azért, hogy a különböző gyártmányú másológépekhez ne kelljen más-más méretűre vágott papírt használni. A szabvány kidolgozásánál azonban volt egy másik, a gyakorlat számára szintén fontos szempont, éspedig az, hogy a papírlapok oldalainak felezésével, vagy kétszerezésével a papír oldalhosszainak aránya ne változzon (Kuhn, M: ISO 216). Ezzel lehetővé vált, hogy a rajzok, iratok nagyítása vagy kicsinyítése során nem keletkezett hulladék papír. Ezt az arányszámot a következő megfontolásból vezethetjük le. Legyen az egyik papírlap rövidebb oldalhossza a, a hosszabbik oldalhossza b, a nagyobbik papírlap rövidebb oldala b, a hosszabbik oldala pedig c.

Ekkor felírhatjuk az alábbi aránypárt:

A DIN szabvány szerint egy ív papír 1 m2 területű. Az oldalhosszait ezek után úgy állapították meg, hogy az oldalhosszak aránya 1:√2 legyen, azaz 841*1189 mm. Ez az A0-ás ív mérete. Az A0 hosszabbik oldalának megfelezésével (a papírlap félbehajtásával) kapjuk a következő, az A1 méretű lapot és így tovább az A2, A3, A4 stb. méretű lapokat. Az A4-es lap mérete 297 * 210 mm.

1-14. ábra Méretváltoztatásnál az oldalak aránya változatlan marad (DIN 476, ISO 216)