Ugrás a tartalomhoz

Analóg eletronika

Dr. Halmai Attila (2012)

EDUTUS Főiskola

Aktív alkatrészek

Aktív alkatrészek

Félvezetők

A félvezető elemeknek négy vegyérték- vagy valenciaelektronjuk van. A vegyértékelektronok, amelyek a külső elektronhéjon keringenek, egy félvezető atomot 4 szomszédos atommal kötnek össze kovalens kötéssel. A kovalens kötésnek, amelyet elektronpár képzésnek is neveznek, az a lényege, hogy két szomszédos atom elektronjai együtt keringenek. Az atomok szabályosan, egymás mellett elhelyezkedve alakítják ki a kristályrácsot, amelynek a félvezető technikában egykristályt kell alkotniuk, tehát kristályhatárok nem fordulhatnak elő. Hibamentes vagy legalábbis minimális hibával rendelkező egykristály előállítása nem egyszerű feladat. A tiszta (intrinsic) félvezető anyag gyakorlatilag szigetelő.

1.2.1.1. ábra

A mai félvezető technológiában azért használják szinte kizárólagosan a szilíciumot, mert az oxidja (SiO2, kvarc), rendkívül stabil és ellenálló, és így meg tudja védeni az alatta létrehozott struktúrát a környezeti behatásoktól.

A p-n átmenet tulajdonságai

A félvezető vezetőképessége adalékolással (dotálás) növelhető. Ha a dotálás céljára 5 vegyértékű elemet választunk, n típusú, ha 3 vegyértékű elemet, úgy p típusú félvezetőhöz jutunk.

1.2.2.1. ábra Forrás: Puklus Zoltán

A p-n átmenetnél külső feszültség rákapcsolása nélkül is kialakul egy potenciálgát, amely külső záró irányú feszültség hatására megnövekszik, nyitó irányúra pedig lecsökken, így a p-n átmenet alkalmassá válik egyenirányításra.

1.2.2.2. ábra Forrás: Puklus Zoltán

A dióda

A dióda legtöbbször szilícium, régebben germánium alapanyagú, két elektródával rendelkező félvezető eszköz. A tiszta félvezető kristályon egymás mellett, ún. p, ill. n típusú adalékolással p-n átmenetet alakítanak ki. Az így előálló dióda egyik kivezetése az anód, a másik a katód. A katódot az ábrázolásban is, és az eszközön magán is egy csíkkal szokás megkülönböztetni.

1.2.3.1. ábra Forrás: Wikipédia

A dióda karakterisztikái

A karakterisztikában a nyitó és záró irányt más-más léptékezésben szokás ábrázolni. A valóságban a diódakarakterisztika az origó környékén is folytonos.

1.2.4.1. ábra Forrás: Wikipédia

A dióda egyenlete és helyettesítő képe

A p, ill. n rétegben úgy tekinthető, mintha pozitív, ill. negatív töltések mozgása létesítené az áramot. A félvezető rétegekhez csatlakozó kivezetések: az A anód, ill. a K katód. A dióda karakterisztikájának egyenlete:

ahol:

Az egyenletben I a dióda árama, I0 a kisebbségi töltéshordozók árama (visszáramnak is nevezik), Uk a diódára kapcsolt külső feszültség, UT az ún. termikus feszültség (szobahőmérsékleten, kb. 300 K°-on UT=26 mV), k=1,38·10-23 joule/K°, a Boltzmann-állandó, T az abszolút hőmérséklet, q=1,6·10-19 Cb, az elektron töltése.

Fontos következtetés: Tekintettel arra, hogy már a dióda egyenletében benne van az abszolút hőmérséklet, ebből következően minden félvezetőt tartalmazó áramkör hőmérsékletfüggő lesz. Ezt különösen az analóg áramkörök esetében kell szem előtt tartani, mivel a digitális áramköri technika bizonyos védettséget jelent a hőmérséklet által okozott változásokkal szemben. Többek között ez is magyarázza a digitális áramkörök nagymértékű elterjedését. Az analóg technika azonban nem nélkülözhető, már csak azért sem, mert gyakorlatilag minden szenzor eredendően analóg jelet ad, amelyet fel kell erősíteni arra a szintre, amelyet már problémamentesen lehet digitalizálni.

A dióda karakterisztikáknak három tartományát különböztetjük meg: a nyitó irányt, a záró irányt és a letörési tartományt. A nyitóirányú jelleggörbét leggyakrabban exponenciális jellegűnek tekintjük (lásd az egyenletet), a záró irányt általában a visszárammal jellemzik. Mivel a kettő közötti átmenet folytonos, igen kicsi, (±) néhány 100 mV-os tartományban a dióda ellenállásként viselkedik. A letörési tartományt az egyenlet nem írja le, egyenirányító alkalmazásoknál ezt a tartományt szigorúan kerülni kell. Vannak olyan alkalmazások, amelyeknél működéskor éppen a letörési tartományt használjuk fel.

Zener- és varicap diódák

Egy különleges kialakítású dióda a Zener-dióda, amely a letörési feszültséget tartósan is képes elviselni, és ezen a feszültségen viszonylag nagy áramot képes vezetni. Ezekkel az analóg tápegységekről szóló részben foglalkozunk.

A varicap vagy varaktor diódák tulajdonképpen változtatható kapacitású diódák. A záró irányban előfeszített dióda saját, belső kapacitása a zárófeszültség növelésével csökken. Ezt mutatja a következő ábra.

1.2.6.1. ábra Forrás: Puklus Zoltán

Látható, hogy a dióda saját kapacitása akkor a legnagyobb, amikor a zárófeszültség nulla. A zárófeszültség növelésével a p-n átmenetnél a kiürített réteg vastagsága nő, és ezzel a kapacitás csökken. A varicap diódákat rezgőkörök hangolására használják. Megjegyezzük, hogy ez az effektus minden diódánál fellép, azonban a varicap diódákat kifejezetten hangolás céljára fejlesztették ki.