Ugrás a tartalomhoz

Népegészségügyi genomika

Ádány Róza (2011)

Debreceni Egyetem

A polimeráz láncreakció

A polimeráz láncreakció

A polimeráz láncreakcióról általában

A DNS szekvenáláshoz felhasznált DNS fragmentek amplifikálása (megsokszorozása) sokáig csak élő sejtekben un. vektorok segítségével (baktériumokban, élesztőben) volt lehetséges. 1985-ben Kary Mullis zseniális ötletére támaszkodva új eljárást, a polimeráz láncreakciót (PCR) dolgozott ki, melyért 1993-ban kémiai Nobel díjat kapott. A PCR új lehetőségeket teremtett a molekuláris diagnosztikában, forradalmasította a géntechnológiát, alkalmazásával bármilyen ismert szekvenciájú DNS-szakasz nagy mennyiségben előállítható (amplifikálható). A PCR technikával akár egyetlen példányban jelenlévő DNS darab is felsokszorozható, míg a korábbi módszerekhez (klónozás) már a kiindulásnál is nagyobb mennyiségű tisztított DNS-re volt szükség. Ennek azonban az a feltétele, hogy ismert legyen a DNS-szakasz szekvenciája legalább a szekvenálandó DNS fragment elején és végén, ezért alkalmazását csak a DNS szekvenálás és az oligonukleotid szintézis módszereinek megismerése, fejlődése tette lehetővé . A néhány nukleotidból álló DNS szakasz szekvenciájának ismeretében tudták elkészíteni a PCR reakcióhoz szükséges indítószekvenciát (primer). A primer 20-25 bázispár hosszúságú, egyszálú DNS oligonukleotid darab, ami komplementer az amplifikálandó DNS-szakasz egyik (5’), illetve másik láncának 3’-végével. A PCR reakció során legelterjedtebben alkalmazott DNS polimeráz enzim a Taq polimeráz, melyet a Yellowstone Park igen magas hőmérsékletű hőforrásaiban élő baktériumból (Thermus aquaticus) izolálták. Aktivitását megőrzi olyan hőmérsékleten is ahol a DNS-t denaturálni kell.

Polimeráz láncreakció lépései

A következő ábra foglalja össze sematikusan a Polimeráz láncreakció lépéseit.

2.2. ábra - A PCR lépései

A PCR lépései

1. a DNS templát DNS magas hőmérsékletre történő hevítése (a folyamat neve denaturáció: 94-96 oC), a DNS két szála különválik.

2. a hőmérséklet csökkentését (45-60 oC) követően a primerek a komplementer indító-szekvenciához hibridizálnak (a folyamat neve: annealing, primer kapcsolódási lépés)

3. ebben a lépésben a DNS polimeráz enzim játsza a fő szerepet, az enzim a primerektől elindulva megkezdi a templát szálnak megfelelő DNS szintézisét és létrehozza a következő ciklusban templátnak számító DNS szálakat.

4. a reakció végére az első ciklus során a kiindulási DNS-szakasz mennyisége megkétszereződik.

5. a folyamat az első lépéshez hasonlóan újra indul, azaz a reakció elegy ismételt magas hőmérsékletre történő emelésével (94-96 Co) a reakció (azaz a DNS szál felépítése) megismétlődik, és a folyamat végére a DNS mennyisége imételten a kétszeresére nő.

Kiegészítő ismeretek Polimeráz láncreakció változatai, alkalmazási területei

PCR termék detektálása gélelelektroforézissel

A gélelektroforézis során ismert méretű DNS-t használnak molekulasúly markernek, így a termék kvalitatív és kvantitatív analízise valósítható meg.

2.3. ábra - PCR termékek gélelektorforetikus megjelenítése

PCR termékek gélelektorforetikus megjelenítése

A PCR alkalmazásai

A PCR legnagyobb előnye óriási sokszorozó képességében rejlik. Alkalmazásával olyan vizsgálatok is megvalósíthatók, melyekhez nagyon kis mennyiségű DNS áll rendelkezésre, legyen az diagnosztikai teszt, bűnügyek során személyek azonosítása vagy kutatási feladat megvalósítása.

A PCR módszer ma már teljesen automatizált és számtalan formája létezik. Egy speciális kivitelezését jelenti a vizsgálandó szövetminta, illetve sejtpreparátum in situ vizsgálata (in situ PCR), amikor a vizsgálati mintát (szöveti metszet vagy sejtpreparátum) egy tárgylemezre helyezik. Ebben az esetben a PCR reakció a tárgylemezen valósul meg. Így nemcsak a vizsgált nukleinsav mennyiségét, hanem annak sejtszintű lokalizációját is meg lehet határozni.

A diagnosztikai alkalmazások közül kiemelkednek a fertőző ágensek (vírusok és baktériumok http://www.virologyj.com/content/pdf/1743-422X-4-65.pdf), betegség specifikus eltérések (mutációk, kromoszómaszakaszok közötti transzlokációk, deléciók, génamplifikációk) kimutatására kifejlesztett módszerek. De a módszert széles körben alkalmazzák az evolúció-, a fejlődés- és molekuláris biológiában, populációgenetikában, örökletes betegségekkel összefüggő genetikai eltérések kimutatásában, igazságügyi orvostani vizsgálatokban, rokoni kapcsolatok megállapításában, gyógyszer-kutatásban, kémiai hatóanyagok által előidézett génexpressziós változások nyomon követésében. A módszer széleskörű alkalmazást nyert a fertőző betegségeket okozó ágensek (vírusok és baktériumok) kimutatásában. A mikroorganizmusok jelenléte közvetlenül a fertőzést követően kimutathjatók, így napokkal esetleg hónapokkal a tünetek megjelenése előtt a pontos diagnózis alapján a fertőzöttek kezelése elkezdhető.

Molekuláris és PCR alapú vizsgálatok az ivóvíz minősítésére.

Génexpresszió változások kimutatása PCR-al

A PCR a DNS kiválasztott szakaszainak megsorozása mellett alkalmas a gének által átírt mRNS vizsgálatára, a génexpressziós változások detektálására is. A génexpressziós változások kimutatása reverz-transzkriptáz PCR (RT-PCR) technikával lehetséges. Elmélete azonos a DNS alapú PCR-al, azzal a különbséggel, hogy a PCR-t megelőzi egy reverz transzkripció, melynek során az egyszálú mRNS-t kettősszálú cDNS-é írják át. Erre azért van szükség, mert az RNS molekula kevésbé stabil, mint a DNS, a környezetben nagy mennyiségben jelenlévő RN-áz enzimek hatására gyorsan lebomlik. A RT-PCR egyik fő hibaforrása, hogy a PCR végtermékek mennyiségét hagyományosan a 30-40-ik ciklus után mérik, azaz akkor, amikor a reakció már a telítési fázisba került, azaz a reakció kimerült, így az elegyben lévő nukelinsav mennyiségére nem lehet már pontosan következtetni. A génexpresszió mértékének kimutatására ma már úgynevezett kvantitatív PCR (Q-PCR), vagy valós idejű PCR (real time PCR: RT-PCR) módszert alkalmaznak. A valós idejű kvantitatív PCR eljárás során a PCR-ciklusokkal egyidőben történik a keletkezett PCR termékek mennyiségének detektálása. A detektálás a fluoreszcencia energiatranszfer elvén alapul. A reakció elegyhez a normál primereken kívül két rövid próbát is alkalmaznak, melyek a primerek által kijelölt DNS szakasz megfelelő helyére specifikusak. Ezek hossza 20-30 bázis, melyeket úgy terveznek meg, hogy bekötődésük után köztük 1-4 bázis „szünet” legyen. Az egyik próba 3' végéhez zölden fluoreszkáló festéket kötnek, a másik próba 5' végét pirosan fluoreszkáló festékkel módosítják. Ha a keresett szekvencia jelen van, a két fluoreszcensen jelzett próba bekötődik a templát DNS komplementer szakaszához. Az 1-4 bázis közelségbe kerülő fluoreszcens molekulák között energia transzfer jön létre, ennek eredmény az lesz, hogy a zölden fluoreszkáló festék által emittált fény gerjeszti a másik festéket, ami piros fluoreszcenciát fog kibocsátani, ez utóbbit detektálja PCR készülék. A mérés ciklusonként történik, a keletkező fluoreszcens jel nagysága az aktuális specifikus targetek számától függ. A módszer alkalmas un. olvadáspont analízissel pontmutációk kimutatására, amennyiben a próbát a mutáció helyére tervezik.

A kvantitatív valós idejű (real-time) PCR (qRT-PCCR) módszerek kidolgozásával lehetőség nyílt arra, hogy egy adott molekuláris eltérést ne csak minőségileg, hanem mennyiségileg is meg lehessen határozni mind a DNS (kópiaszám) mind az RNS (génexpresszió) szintjén.