Ugrás a tartalomhoz

Népegészségügyi genomika

Ádány Róza (2011)

Debreceni Egyetem

Komparatív genom hibridizáció

Komparatív genom hibridizáció

A komparatív genomiális hibridizáció (CGH) a fluoreszcencia in situ hibridizáció elvén alapuló molekuláris genetikai módszer, melyet 1992-ben Kallioniemi és munkatársai dolgoztak ki. CGH-el a tumor sejtek genomjában előforduló kromoszómális eltérésekről (relatív DNS-amplifikációkról és -deléciókról) nyerünkinformációt. Ezzel a módszerrel a tumor genomban nemcsak ismert génamplifikációk és géndeléciók detektálhatók, hanem ismeretlen genetikai eltérések (DNS többletek és hiányok) is kimutathatók, valamint a CGH technikával lehetőség van a tumor sejtekben talált genetikai eltérések kromoszómális szintű feltérképezésére is normál kromoszóma preparátumokon. A standard citogenetikával szemben a DNS kópiaszám eltérések meghatározásához nincs szükség a tumorsejtekből kromoszóma preparátumok előállítására. A friss szöveti minták mellett archív, formalin-fixált paraffinba ágyazott szövetek genetikai analízise is megoldható, így lehetőség van a retrospektív vizsgálatokra is. A CGH segítségével tumorok sorozatának kromoszómális szintű vizsgálata valósítható meg anélkül, hogy a tumorsejteket mesterséges körülmények között manipulálnánk és így az eredeti genetikai eltéréseket esetleg in vitro körülmények között megváltoztatnánk.

2.4. ábra - Array alapú komparatív genom hibridizáció

Array alapú komparatív genom hibridizáció

Az array CGH felbontását a mikrocsipekre felvitt DNS szekvenciák mérete határozza meg.

2.5. ábra - Az array CGH felbontása a CGH csipre felvitt targetek méretének függvényében

Az array CGH felbontása a CGH csipre felvitt targetek méretének függvényében

Az array-CGH módszer érzékenysége az elmúlt évek során folyamatosan nőtt. Albertson és mtsai közölték az első olyan CGH array-t, mely egymást átfedő kromoszóma szakaszokat tartalmazott, így lefedte az egész humán genomot, az átlagos felbontás 75 kb-ra változott (2002). A teljes genomot reprezentáló BAC alapú array-ekre felvitt egyedi klónok száma 2,400-32,000 elem között változik, az elemszám meghatározza a felbontás mértékét is (4.2.)

A genomi klón alapú arrayek alkalmazása bizonyítottan sikeres, számos alkalmazási lehetőségét írták le és bizonyára az alkalmazások köre tovább fog bővülni az elkövetkező években.

A BAC alapú array-CGH-nek, mint minden módszernek vannak korlátai is, ezek röviden az alábbiak:

1.) a feloldást az inzertek mérete határozza meg (~ 40 kb cosmid, ~ 100 kb BAC),

2.) targetek közötti távolság,

3.) a gyakran ismétlődő szekvencia elemeket (pl. Alu, LINE: lomg interspread repeats) vagy más redundáns szekvenciákat (szegmentális duplikációk), centroméra és telomera ismétlődő szakaszait is tartalmazzák.

cDNS array alkalmazása kópiaszám eltérések kimutatására.

Az első cDNS alapú array-t, melyet kópiaszám kimutatására alkalmaztak 1995-ben közölték. A gén kópiaszám eltérések és a génexpresszió közötti kapcsolatot cDNS microarray-n először Pollack és mtsai vizsgálták (1999). Tanulmányozták, hogy milyenkapcsolat áll fenn emlődaganatok és emlőtumor sejtvonalak mRNS expressziósprofilja és DNS kópiaszám eltérései között. Ugyanazt a cDNS microarray-t (6,691gén) alkalmazták a DNS kópiaszám eltérések és a mRNS expresszió mértékének meghatározására. A párhuzamos microarray kísérletek adatainak összehasonlításátkövetően megállapították, hogy a nagyfokú amplifikációval jellemezhető génekmérsékelt vagy magas génexpressziót mutatnak, továbbá a génexpresszió mértékét befolyásoló kópiaszám eltérésekre különböző mértékű génkópiaszám eltérések jellemzőek. Ezek az adatok jó összhangban vannak azokkal a megfigyelésekkel, melyek szerint az ErbB2/HER2/NEU onkogén amplifikáció és a gén általkódolt fehérje expressziója sejt-sejtszinten nagyfokú heterogenitást mutat, ez a heterogenitás a génexpresszióban is megnyilvánul. Ehhez hasonló vizsgálatokkal eddig jelentős számú olyan gént azonosítottak, melyek különböző betegségek patogenezisében fontos szerepet játszanak. A cDNS alapú array-ek legnagyobb hátránya, hogy csak ismert gének eltéréseinek kimutatására alkalmas, intronok és intergén szekvenciák, melyeknek a génszabályozásban lehet szerepük nincsenek reprezentálva.

Forradalmian új lehetőségeketkínálnak az oligonukleotid alapú microarray-ek oa-CGH Az oa-CGH platformok egyszálú 25-85mer elemeket tartalmaznak. Az Affymetrix oa-CGH platformja 25mer oligonucleotidokat tartalmaz, ezek alkalmazásánál csak a teszt DNS-t kell jelölni és hibridizálni.A többi elérhető platformmal összehasonlítva óriási előnye, hogy SNP-k iskimutathatók párhuzamosan. A másik platform-ot az Agilent kínálja, a 60meroligo-nukleotidok vannak az array-re szintetizálva. Az analizálható DNSmennyisége akár 10 ng is lehet hiszen PCR amplifikációval a kis mennyiségű DNSis alkalmassá válik az analízisre. Az Agilent platform alkalmazhatóságát már bizonyították tüdődaganatok genetikai vizsgálata során. A harmadik oa-CGH platform megalkotása a NimbleGen nevéhez fűződik. Óriási előnye, hogy igen flexibilis, az oligonukleotidok különböző variációs lehetősége vihető fel az arrayre. NimbleGen array CGH platformra történő hibridizáció eredményét mutatja a következő ábra.

2.6. ábra - Array CGH eredmények eltérést nem mutató (A) és a daganat genomban (B) számos eltérést mutató mintákon

Array CGH eredmények eltérést nem mutató (A) és a daganat genomban (B) számos eltérést mutató mintákon

Lucio és mtsai egy alternatív módszert vezettek be az oa-CGH platformokhoz szükséges DNS jelzésre, amit amplifikációs módszerrel kombináltak. A módszer neve ROMA (representational oligonucleotide micro arrayanalysis), ehhez akár 50 ng DNS is elegendő, fontos megjegyezni, hogy mivel amplifikációval történik a jelzés, mind a teszt, mind a referencia DNS jelzését azonos körülmények között kell elvégezni. A ROMA módszer a NimbleGen platformon megbízható és nagyfelbontású analízist eredményez kis mennyiségű DNS-ből és alkalmazhatóságát már több munkacsoport bizonyította.

A teljes genomot mozaikszerűen lefedő array-CGH platform (tiling-pathaCGH) kifejlesztése Ishkanian és munkatársai nevéhez fűződik (2004), céljuka genom átfogó analízise és a kacinogenezissel összefüggő ún. fokális eltérések (pl. kisméretű gének amplifikációja) azonosít á sa. Az array neve: SMRT (submegabase resolution tiling-set), az array-en a human genomeegymást átfedő klónokkal van reprezantálva. Átfedő klónok használatával egy egyedi BAC klón feloldása 40-80 kb-ra változott. Ezeknek az ún. tiling-patharrayeknek az alkalmazása azért előnyös, mert lehetővé vált mikro-alterációk kimutatása is, valamint jelentősen megnőtt az eltérések kimutathatóságának pontossága az ugyanazon régiót lefedő párhuzamos klónok miatt.

A tumor genom nagyfelbontású megjelenítésének jelentőségét az alábbi példán szemlélteti: MCL (mantle cell lymphoma) jellegzetes eltérése a t(11;14)(q13;q32). Ez a transzlokáció a ciklin D1 onkogén amplifikációját eredményezi, azonban a turmorigenezishez további eltérések szükségesek, melyekről pontos információk sokáig nem álltak rendelkezésre. Marker-alapú CGH vizsgálatokkal nemrégiben egy 812 klónt tartalmazó array-en, ami egyrészt számos MCL specifikus eltérést és 209 (felbontás 15 Mb), a genomot lefedő klónt tartalmazott, Kohlhammer és mtsai átlagosan tumoronként 6,7 alterációt detektáltak, valamint 50%-al több genomiális szegment eltérését (SeGA: segmental genomic alterations) mutatták ki, mint konvencionális CGH-el. De Leeuw ésmtsai a 32,433 klónt tartalmazó tiling-path array-t alkalmazva átlagosan már35,6 eltérést (tartomány: 21-57) írtak le és felismertek 35 olyan régiót, melyekről korábban nem volt információ, ezek közül 26% 1 Mb-nál kisebb méretű volt. Ez a fenti példa szemléletesen illusztrálja azt a tendenciát, ami az array-CGH feloldásának növekedésével együtt járó eltérések számának emelkedését jellemzi.

Kópiaszám variációk a normál és tumor humán genomokban

A genom kópiaszám eltéréseinek elemzésekor mindenképpen meg kell említeni azt a napjainkban fokozott figyelemmel kísért, váratlan felismerést, mely szerint a humán genomban számos kópiaszám variáció (copy number variation CNV) található. Yafrate és mtsai valamint Sebat és mtsai több mint 200 nagyarányú kópiaszám polimorfizmusra figyelt fel, melyek mérete 100 kb –tólakár 2 Mb-ig is terjedhet (2004). Ezen polimorfizmusok jelentősége ma még nem teljesen ismert, de fontos a gén kópiaszám eltérésekhez történő hozzájárulásuk mértékének meghatározása. Az örökletes kópiaszám polimorfizmusok és a szomatikus eltérések következtében kialakult génkópiaszám eltérések megkülönböztetése fontos feladat, ez gondos vizsgálattervezéssel és referencia kiválasztással valósítható csak meg. Az egyik ilyen lehetőség, pl. ha referenciaként a betegből származó normál DNS-t használjuk referenciának. Ezeknek a polimorfizmusoknak fontos szerepe lehet a daganatos betegségek iránti fogékonyság megítélésében.

A tumori genezisben szerepet játszó gének felismeréséhez mindenképpen nagyfelbontású analízisekre van szükség. A nagyfelbontású array-CGH-el képesek vagyunk ismert, konccenzusrégiók eltéréseinek finomítására és a leszűkíthetjük az eltérések lokalizációját a genomban. A nagyfelbontású array-CGH analízisekkel nagyobb a valószínűsége annak, hogy olyan kisméretű, ismeretlen, a daganatok kialakulásával és progressziójával összefüggő eltéréseket találjunk, melyeket a korábbi módszerekkel nem tudtunk kimutatni. A nagyfelbontású array-CGH platformok hozzájárulnak ahhoz, hogy kevesebb elemet tartalmazó diagnosztikus platformokat hozzanak létre, melyek klinikai hasznossággal is bírnak, hiszen a kópiaszám eltérések azonnali klinikai és diagnosztikai alkalmazással bírhatnak és sok esetben fontos prognosztikai tartalmuk is lehet.

Eddig az array-CGH platformot elsősorban genetikai eltérések felismerésére alkalmazták. Az első olyan array-CGH platformot, mely klinikai kipróbálás stádiumában van 2004-benállították össze. Ezt a B-CLL klinikai klasszifikációjának és a terápia kiválasztásának megkönnyítésére fejlesztették ki (Lichter munkacsoportja, Heidelberg). A komplex genetikai eltérések alapján eldönthető, hogy kemoterápia vagy őssejt transzplantáció javasolt a betegség gyógyítására.

Tumorok sorozatának tanulmányozásával számos olyan információhoz juthatunk, melyek hozzájárulnak a daganatok progresszióját kísérő eltérések molekuláris mechanizmusának megértéséhez, genetikai markerek felfedezéséhez. Ahhoz, hogy az array-CGH technológiát a klinikai gyakorlatban is széleskörűen alkalmazni tudják fontos, hogy alkalmazása gyors és egyszerű legyen, a vizsgálatok ára kompetitív legyen a jelenlegi citogenetikai technikák árával.

Az array-CGH technikát ma már nem csak daganatok genetikai eltéréseinek kimutatására használják, alkalmazást nyert az alábbi területeken is: reproduktív patológia, posztnatális és prenatális diagnosztika, rövidesen bevezetésre kerül preimplantációs genetikában is. A felbontás növekedése eredményezte azt is, hogy különböző betegségekben új mikrodeléciókat karakterizáltak pl. CHARGE szindrómában, melynek genetikai háttere eddig ismeretlen volt, egy mintában de novo deléciót mutattak ki a 8q12-es régión. A régió részletes, DNS szevenálással egybekötött analízise eredményezte a CHD7 gén oki szerepének felismerését, mely mikrodeléció vagy mutáció révén járul hozzá a betegség kialakulásához. Ez a vizsgálat bizonyítéka annak, hogy az array-CGH valóban alkalmas betegség specifikus gének lokalizációjának meghatározására. Továbbá array-CGH módszert alkalmaztak X-kromoszómához kötött mentális retardációk genetikai eltéréseinek felismerésére is. A jövőben az array-CGH alkalmazhatósága bizonyára tovább fog emelkedni, mind betegség specifikus gének felismerésére, mind a betegségekre való hajlamra vonatkozóan.