Dr. Czupy Imre, Vágvölgyi Andrea (2011)
A hőbontás (pirolízis) a szerves anyagú hulladék megfelelően kialakított reaktorban, hő hatására, oxigénszegény vagy oxigénmentes közegben szabályozott körülmények között bekövetkező kémiai lebontása.
A hőbontás során a szerves hulladékból különböző termékek keletkeznek:
pirolízisgáz;
folyékony termék (olaj, kátrány, szerves savakat tartalmazó bomlási víz);
szilárd végtermék keletkeznek. (pirolíziskoksz).
Ezek összetétele, aránya és mennyisége a kezelt hulladék összetételétől, a reaktor üzemi viszonyaitól és szerkezeti megoldásától függ.
A hőbontás többféle hőmérsékleten végezhető:
kis- és középhőmérsékletű eljárások (450-600 °C);
nagyhőmérsékletű eljárások (800-1100 °C);
nagyhőmérsékletű salakolvasztások eljárások (≺1200 °C).
A pirolízis során keletkező végtermék elsősorban energiahordozóként (fűtőgáz, tüzelőolaj, koksz), ritkábban vegyipari másodnyersanyagként (pl. a gázterméket szintézisgázzá konvertálva metanol előállításához) és esetenként egyéb célokra (talajjavítás szilárd, szénben dús maradékkal; fakonzerválás vizes maradékkal; granulált salakolvadék építőipari adalékanyagként stb.) hasznosítható.
A pirolízis során döntőek a kémiai átalakulás reakciófeltételei
hőmérséklet;
felfűtési idő és a reakcióidő;
szemcse-, ill. darabnagyság;
átkeveredés mértéke, hatékonysága.
A végtermék összetételének és részarányának alapvető meghatározója a hőmérséklet: alkalmazott hőmérséklettartomány általában 450–550 °C.
A reaktorok a fűtési mód szerint lehetnek:
közvetett (reaktorfalon keresztül, ill. cirkulációs közeg segítségével) és
közvetlen fűtési megoldásúak.
A pirolízis előnyei:
a szilárd maradékok vízfürdős leválasztást követően különbözőképpen feldolgozhatók;
keletkeznek értékesíthető alifás és aromás szénhidrogének;
légszennyező hatása jelentősen kisebb, mint a hulladékégetésé.
A pirolízis hátrányai:
fokozott anyag-előkészítési igény;
a kisebb hőmérsékletű eljárásokban a gáztisztítás összetettebb és komplikáltabb;
az ennek során keletkező, többnyire erősen szennyezett mosóvizet is komplex módon tisztítani kell;
az égetéshez képest nagyobb a lehetősége a nehezen bomló, nem tökéletes égéstermékek képződésének;
a települési és az egészségügyi veszélyes hulladékkezelésben „áttörés” a reduktív és oxidatív eljárás soros összekapcsolása, folyamatirányítási rendszerek kifejlesztése és alkalmazása.
1. Siemens eljárás
Ez az eljárás a pirolízis és az azt követő nagyhőmérsékletű égetés kombinációja.
A 150–200 mm-re aprított szilárd települési és ipari hulladékot 450–500 °C hőmérsékleten pirolizálják.
Az így előállított pirolízisgázokat további kezelés nélkül közvetlenül a nagyhőmérsékletű (kb. 1300 °C) égetőkamrába vezetik.
A szilárd pirolízismaradékot rostálják, a fémeket leválasztják. A tapasztalat szerint az 5 mm-nél kisebb részek gyakorlatilag az egész izzítási kokszot tartalmazzák.
Ezt megőrlik és szintén a nagyhőmérsékletű égetőkamrába vezetik.
A hőhasznosítást követően (gőz-, ill. áramtermelés) a füstgázt a hulladékégetőkhöz hasonló komplex rendszerben tisztítják.
A salakolvadékot vízfürdős hűtést követően tárolják ki.
Az eljárás előnye, hogy a hagyományos égetéssel szemben, a gáz és a finomra őrölt pirolíziskoksz elégetése az égetőkamrában alacsony (20–30%) légfelesleggel történik.
2. Lurgi eljárás
A pirolizis ezen technológiája az előzőtől főként az elülső, termikus feltáró egységben különbözik, ahol cirkuláló fluidágyas kemencét alkalmaznak.
A pirolízishez szükséges energiát a gáz és a pirolíziskoksz részleges elégetésével biztosítják, a fluidágy tehát önálló elgázosítóként működik.
A keringtetett fluidizáló közeget olyan fűtőágy felett vezetik, amelyben a hőhasznosító kazánban előállított gőzt túlhevítik (hatásfoknövelés).
A fűtőágyat az égetési levegővel fluidizálják és így az égetés véggáza nem okoz klórkorróziót. A gáz-és szilárd szén kiégetése, valamint a véggáz tisztítása az előző eljáráshoz hasonló.
3. Noell-féle eljárás
Ennél a technológiánál a szilárd hulladék termikus feltárása közvetetten fűtött forgódobos reaktorban, aprítás után, 450–550 °C-on történik.
A pirolízis kokszot szárazon hűtik, a fémtartalmát leválasztják, majd őrlést követően az áramlásos rendszerű elgázosító reaktorba vezetik.
A pirolízisgázokat gyorshűtéssel hűtik, a kondenzálható szénhidrogéneket leválasztják és szintén a reaktorba vezetik.
A pirolízis összes maradékanyaga elgázosításra kerül. Az áramlásos gázosítóban oxigén felhasználásával parciális oxidáció megy végbe, salakolvasztási hőmérsékleten, 2–35 bar túlnyomás mellett.
A véggázt hűtik, tisztítják. A hűtővízzel előtisztított gáz alacsony hőmérsékletű gőzhasznosítás mellett hűl le és a gáztisztító berendezésben szabadul meg a kéntartalmától, a kinyert elemi kén értékesíthető. A szilárd olvadék vízfürdőben kerül lehűtésre és további hasznosításra.
A gáztisztító szennyvize a nyersgáz szennyezéseinek nagy részét tartalmazza, ezért az oldott gázoktól és szilárd részektől elválasztják, elgőzölik.
A további gázhűtésből származó vizes kondenzátumot a gázmosóban újra felhasználják. A gáztisztításból különböző célra hasznosítható tisztított gázt nyernek.
4. Termoselsct-eljárás
Ezt a technológiát alapvetően a szilárd települési és ipari hulladékok kezelésére dolgozták ki. A települési hulladék előkezelés (aprítás) nélkül feldolgozható a berendezésben.
A technológia lépései a következők: a hulladék tömörítése, mely a hulladék heterogén összetétele miatt szükséges. Ezt követi a pirolízis (gáztalanítás, a levegő kizárása és állandó nyomás mellett, közvetetten fűtött pirolizáló csatornában kigázosítás vagy pirolízis 500–600 °C hőmérsékleten). Az utolsó lépés az elgázosítás, nagyhőmérsékletű égetés (elgázosítás tiszta oxigénnel 1200 °C hőmérséklet feletti tartományban)
A megolvadt szervetlen alkotórészek homogenizálva, stabil vegyületekben kötődnek meg, amelynek további hasznosítása kedvező (építési és kohászati alapanyag).
A nagyhőmérsékletű elgázosítás során valamennyi szerves anyag elbomlik, a képződő szintézisgáz lényegében hidrogénből, szén-monoxidból és vízgőzből tevődik össze, kismennyiségű szilárd és gáznemű szennyező tartalommal.
A gáz tisztítása a szokásos módon, több fokozatban történik. (Barótfi, 2000.)