Ugrás a tartalomhoz

Fizikai példatár 1., 1. Optika feladatgyűjtemény

Csordásné Marton Melinda (2010)

Nyugat-magyarországi Egyetem

1.4 Elméleti kérdések, gyakorlati alkalmazások

1.4 Elméleti kérdések, gyakorlati alkalmazások

  1. A fény üvegszálakon is továbbítható. Az elmúlt évtizedekben nagy fejlődés történt az optikai üvegszálak információtovábbítási alkalmazása terén. Mi a jelenség fizikai magyarázata, milyen keresztmetszetűek lehetnek ezek az üvegszálak, melyek a száloptikának az előnyei a hagyományos megoldásokkal szemben?

A teljes visszaverődés következtében a fény vezethető egy hajlékony, átlátszó üvegszálon is, amelynek a keresztmetszete körülbelül annyi, mint az emberi hajszálé. Ha a szál meghajlik, akkor sem lép ki a fény a szálból. Az optikai szálakra csak a külső szennyeződések, például olaj, víz jelenthet veszélyt, mert ezek megváltoztatják a törésmutatót, így a határszöget is, és „kilyukasztják” a száloptikát. Az egyes szálak védelme érdekében a szálakat magra és külső zónára osztják, a külső rész kisebb törésmutatójú üvegből készül. Több üvegszál alkot egy köteget, amelyet további külső védelemmel látnak el.

A száloptika alkalmazása sokrétűen lehetséges a gyógyászattól, (laparoszkópos vizsgálatok, műtétek) az információtovábbításig. Előnyei − a teljesség igénye nélkül − kis méret, kis tömeg, elektromos zavarokkal szembeni jó ellenállás, lehallgatással szembeni biztonság, és viszonylag alacsony ár.

30. ábra

  1. A száloptikával továbbított kép nem torzul még akkor sem, ha a szálat meghajlítjuk, vagy megcsavarjuk. Mi ennek az oka?

A köteg elején és a végén a szálak egymáshoz viszonyított távolsága ugyanaz.

  1. Lehet-e, hogy bizonyos feltételek mellett a domború lencse homorú lencseként viselkedik?

Mivel a lencse fókusztávolsága függ a lencse és a lencsét körülvevő közeg relatív törésmutatójától, ezért, ha egy lencsét levegő helyett valamilyen más közegben használunk, például vízbe merítjük, akkor megváltozik a dioptriája. Jól megválasztott anyagból készült lencse és megfelelő a lencsét körülvevő közeg estén a jelenség megvalósítható. Ha a közeg törésmutatója nagyobb, mint a lencse anyagáé, akkor a domború lencse homorú lencseként viselkedik.

  1. Mi az oka annak, hogy ha tiszta vízbe lemerülünk, és kinyitjuk a szemünket, akkor homályosan látunk?

A 3. feladat szerint, ha a szemünk szaruhártyája levegő helyett vízzel érintkezik, akkor megváltozik a dioptriája, amely homályos látást eredményez. A búvárszemüvegben levegő van, így szemünk a megszokott módon működik.

  1. Ha valakinek a szemét kisebbnek látjuk, amikor viseli a szemüvegét, akkor rövidlátó, vagy távollátó az illető?

A rövidlátás korrigálására homorú lencsét alkalmaznak, amely kicsinyít. Tehát az illető rövidlátó.

  1. Rajzoljuk le, hogy miként fordítja meg a K optikai képet az ábrán látható üvegprizma!

31. ábra

  1. Miért használunk egyes optikai berendezésekben prizmákat, mikor az általuk produkált jelenség síktükrökkel is elérhető lenne?

Az ezüstbevonatú tükrök idővel károsodnak. Ha a prizma belső lapjára 45o-os fénysugár esik, akkor az a szög több mint a teljes visszaverődés határszöge, tehát teljes visszaverődés lép fel. A visszaverődés a prizmák esetében az üveg belső felületén100%-os. Továbbá a prizmák kevésbé törékenyek, hosszabb élettartamúak. Prizmák felhasználásával kevésbé sérülékeny, jobb minőségű, tartósabb optikai rendszereket lehet készíteni.

  1. Mi a diszperzió?

A diszperzió a rácsoknak vagy a prizmáknak azt a tulajdonságát méri, hogy a hullámhossztartományt milyen széles szögtartományra szórja szét:

Minél nagyobb a diszperzió, annál nagyobb a hullámhossz szempontjából egymáshoz közel fekvő két színképvonal szögkülönbsége.

  1. Laboratóriumba színkép előállítására prizmát szeretne alkalmazni. Milyen anyagból, és milyen prizmát készítene?

A színkép annál szebb, minél nagyobb a prizma anyagának a diszperziója. Ez a gyémántnál a legnagyobb, tehát gyémántból készült prizmával gyönyörű színképet tudnánk előállítani. Ezért is olyan gyönyörűek a gyémántból készült ékszerek. Persze egy gyémántból készült prizma túlságosan drága lenne, ezért üvegprizmákat alkalmazunk.

  1. Van-e olyan fény, vagy olyan prizma, amellyel nem tudunk színképet előállítani?

Ha monokromatikus fényt, például lézer fénysugarat bocsájtunk a prizmára, akkor nem tudunk színképet előállítani.

  1. Miért keletkezik kromatikus aberráció a lencséknél, és miért nem figyelhető meg ugyanez a jelenség a gömbtükröknél?

A lencsék fókusztávolsága függ a törésmutatótól. A törésmutató pedig, függ a fény a hullámhosszától. Ezért a lencsék esetében a fókuszpont nem egy jól meghatározható pont, hanem inkább egy tartomány. Vörös fényre van a legmesszebb, ibolya fényre van a legközelebb. Ez a magyarázata annak a kísérletnek, amikor egy ernyőt az optikai tengely mentén, a fókuszpont környékén mozgatjuk, akkor azt tapasztaljuk, hogy a fókuszpont előtt felfogott fényfolt széle vörös, a fókuszpont után felfogott fényfolt széle pedig ibolyaszínű. Ezt a jelenséget nevezzük kromatikus aberrációnak.

  1. Hogy tudjuk a kromatikus aberrációt javítani?

Akromatikus lencsepárral csökkenthetjük. Összetett lencsékkel a javítás úgy történik, hogy egy gyűjtő és egy szóró lencsét építenek össze. A szórólencse fent említett hibái ugyanis éppen ellenkező értelműek, mint a gyűjtő lencséé.

  1. Mi a gömbi eltérés, azaz a szférikus aberráció?

A lencse szélső zónáján áthaladó fénysugarak az optikai tengelyt előbb metszik, mint a középső zónán áthaladóak. Ez gyakorlatilag azt jelenti, hogy az egyes zónák különböző fókusztávolságúak. Emiatt az optikai tengellyel kisebb szöget bezáró sugarak távolabb, az optikai tengellyel nagyobb szöget bezáró sugarak közelebb egyesülnek. Így a tárgypont képe elmosódott lesz.

  1. Hogy tudjuk a szférikus aberrációt korrigálni?

A szférikus aberráció rekeszeléssel, azaz diafragma alkalmazásával, és több lencse összeépítésével javítható.

  1. Fényképezőgép optikáját tervezi. Milyen anyagi minőségű lencséket választana?

Egy fényképezőgép összetett lencserendszerű, mert minél több lencsét alkalmazunk, annál tökéletesebben tudjuk javítani a lencsehibákat, és annál tökéletesebb lesz a kép élessége is. Az első ilyen, még ma is korszerűnek tekinthető, négy lencséből álló lencserendszert, Petzval József magyar fizikus alkotta, gondos számításokat követően.

Ma több hat- tíz lencséből álló rendszereket alkalmaznak, ilyen például a Zeiss optika, ahol több száz munkaóra alatt készül el egy objektív. Az első Zeiss Biotar optikát két mérnök három évig tervezte, és közel háromszáz munkaóra alatt készült el.

Ma a fényveszteség csökkentése érdekében vékony fém filmréteggel vonják be a lencséket, ezért látjuk őket ibolya, vagy zöldes színűnek. Egy távcsőnél így 40% helyett 20-25%-ra csökkenthető a fényvisszaverődés miatti veszteség.

  1. Miért látjuk a vörösbor színét feketének, ha azt zöld színű üvegbe palackozzák?

Azért látjuk szinte feketének, mert a vörös és a zöld színek egymás komplementer színei.

  1. Ha a vízen úszó olajfoltra nézünk, színeket látunk. Pontosan azokat a színeket látjuk-e, mint amelyeket a prizma színképénél tapasztaltunk?

Nem ugyanazokat a színeket látjuk. A prizma a diszperzió jelensége alapján fehér fény, például napfény esetében előállítja a teljes spektrumot. Az olajfolton látható szivárványszerű színek interferencia jelenség következménye, ezért abból bizonyos színek hiányoznak.

  1. Ha a fénysugár útjába keskeny rést −esetleg hajszálat−helyezünk, akkor az utána elhelyezett ernyőn oldalirányban sötét és világos sávokat figyelhetünk meg. Mivel magyarázható ez a jelenség?

A jelenség a fényelhajlás és az interferencia együttes következménye. Megfigyelhető, hogy a csíkok távolsága a rés szűkítésével és a hullámhossz növelésével nő, fehér fényben a középső fehér csík kivételével színesek. A képek fényereje a középponttól távolodva egyre csökken.

32. ábra

A 31. ábrán a fény hullámhosszához képest nagyobb, rést feltételezünk. Az elhajlított fényből vizsgáljuk a rés normálisával szöget bezáró párhuzamos nyalábot. A nyaláb két szélső sugara közötti útkülönbség . Mérjük fel a szakaszra a hosszúságú szakaszokat, majd a pontokon keresztül húzzunk párhuzamosokat az szakasszal. Így az szakaszt zónákra osztottuk. Lásd 31. ábrát!

33. ábra

Az szakasz a hosszúságnak nem feltétlenül egész számú többszöröse.

Ha a sugarak a rés méreteihez képest egy „végtelen” messze elhelyezett ernyőn találkoznak, vagy ha a sugarakat egy gyűjtőlencsével egyesítjük, akkor a szomszédos zónák sugarai kioltják egymást. Az szög folytonos változtatásával változik a zónák száma is. Pontosan két zóna vagy páros számú zóna esetén a sugarak kioltják egymást, itt lesz a minimum helye. Azon szögek esetén, amikor három zóna vagy páratlan számú zóna van, akkor erősítés várható.

Összefoglalva: az intenzitásminimumokhoz tartozó szögekre fennáll:

és az intenzitásmaximumokhoz tartozó szögekre teljesül, hogy

Az egyre halványabb csíkok megjelenése azzal magyarázható, hogy minél nagyobb szögben hajlanak el a fénysugarak, annál több zóna keletkezik, és a szomszédos zónák kioltják egymást. A „maradék” zóna akkor már sokkal kisebb intenzitással hozza létre a látható fényjelenséget.

  1. Mi az optikai vagy diffrakciós rács?

Az optikai rács egymással párhuzamosan elhelyezkedő rések sorozata. Optikai rács a természetben is létrejön, például ilyen a madarak tollazata, a bogarak fedőszárnya, de mesterségesen is előállítunk optikai rácsokat.

Forrás: http://atmosphericoptics.blogspot.com/2007_10_01_archive.html

Ha a rések párhuzamos irány mellett arra merőlegesen is elhelyezkednek, akkor keresztrácsot kapunk. Ilyen egy sűrű szövésű anyag, például egy nejlonfüggöny is. Ha egy ilyen függönyön keresztül figyeljük az utcai lámpák fényét, akkor 35. ábrán láthatóan a fények keresztirányban ölelik körül az izzókat.

Térbeli optikai rácsot alkotnak a hópelyhek, a jégkristályok, ionrácsok stb.

35. ábra: Az utcai világítás keresztrácson keresztül fényképezve

Forrás: http://fejesoptika.uw.hu/elhaj.htm

Az optikai rácsot a rácsállandóval jellemezhetjük, amely a szomszédos rések azonos helyzetű részeinek a távolsága.

  1. Mi történik, ha egy optikai rácson lézerfényt vagy fehér fényt bocsájtunk keresztül?

Ha a fény rés helyett egy transzmissziós optikai rácson halad keresztül, akkor hasonló jelenséget tapasztalunk, mint a résen való áthaladáskor, de ekkor a világos helyek sokkal keskenyebbek, mint a sötétek, vagyis a sötét környezetből élesen válnak ki.

36. ábra: Fényelhajlás rácson

Minél több rés található a rácson centiméterenként, annál nagyobb szögű elhajlási jelenségek jönnek létre. A diffrakciós rács működése a többréses interferencián és az egyréses diffrakción alapul. Ahogy a rések száma nő, a fő maximumok egyre keskenyebbek lesznek. Monokromatikus fénynyaláb, pl. lézerfény esetén csak éles pontokat, vonalakat figyelhetünk meg, fehér fény esetén megjelenik a teljes színkép.

Keresztrács esetében az 5. ábrán látható kép alakul ki.

Forrás: http://fejesoptika.uw.hu/elhaj.htm

  1. Mi okozza a Hold körüli színes, koncentrikus körök struktúráját.

A vékony felhőrétegen keresztül haladó, a vízcseppeken, jégkristályokon elhajló fény okozza a Hold körüli színes, koncentrikus körök struktúráját.

Forrás: http://fejesoptika.uw.hu/elhaj.htm

  1. Mivel magyarázható a sarkvidéken megfigyelhető jelenség, a mellék-Napok megjelenése?

39. ábra: Több Nap látható az égen

Forrás:http://fejesoptika.uw.hu/elhaj.htm

A levegőben kavargó apró jégkristályok optikai rácsot alkotnak. Az erősítési helyek úgy világítanak, mintha több Nap lenne az „égen”.

  1. Mire használjuk az optikai rácsokat?

Az optikai rácsokat a fény hullámhosszának a meghatározására használják. (Lásd 1.3 fejezet 5. 6. feladatát.)

A diffrakciós rácsokat gyakran használják prizmák helyett a színképelemzésben, mert a rácsok a spektrumot szélesebb szögtartományra szórják szét, ezáltal a hullámhossz sokkal pontosabb meghatározását teszik lehetővé.

  1. Hogy készülnek az optikai rácsok?

Az első optikai rácsot Freunhofer készítette 1814-ben egymás mellé helyezett nagyon vékony huzalok vagy fonalak segítségével. Később üveg vagy fémlemezekre ejtett karcolások sorozatával készítettek optikai rácsokat. A rácsok elkészítése komoly kémiai ismereteket igényelt a megfelelő anyagok kiválasztásának a vonatkozásában. Az üveglemezeket speciális vegyületekkel vonták be, és erre a bevonatra ejtették egymáshoz nagyon közel a bemetszéseket. 1840-től megjelentek a milliméterenként 300-400 vonást tartalmazó optikai rácsok.

Jedlik Ányos (1800-1895) magyar fizikus figyelme ekkor fordult az optikai rácsok felé. Az akkor gyártott optikai rácsokban a vonalak távolsága nem volt egyforma, ezért az általuk létrehozott színkép sem volt tökéletes. Jedlik Ányos ezért nem a vonalak számának növelését tűzte ki célul, hanem az optikai rács pontosságának a növelését. Sokat kísérletezett, amíg egy párizsi órásmestertől a megfelelő üveg alapanyagot beszerezte, de az osztógépen is számtalan újítást alkalmazott. Például, nem a gyémánt tű mozgott a karcolandó felület fölött, hanem a felület mozgott nagy pontossággal a tű alatt. Egy rács elkészítése több napot vett igénybe. A Jedlik által gyártott optikai rács 162 rést tartalmazott milliméterenként, a rések hossza 75 mm volt, a teljes rács szélessége pedig 70 mm.

40. ábra: Jedlik Ányos

Népszerűvé váló optikai rácsainak komoly piaca volt Párizsban, mert a rácsokat nemcsak tudományos célra használták, hanem a párizsi szalonokban társasági esemény volt az általuk előállított pompás színképek kivetítése és nézegetése. Jedlik rácsai pedig minden addiginál szebb, fényesebb és élesebb színképeket eredményeztek a rács nagy pontosságának köszönhetően. A történet szomorú csattanója, hogy 1868-ban amikor Jedlik az osztógép tisztítását végeztette a műszerész ellopta a gép platinából és aranyból készült legfontosabb alkatrészeit, így a gép használhatatlanná vált. Jedliket annyira elkeserítette ez az eset, hogy többet már nem foglalkozott a gép javításával.

A modern transzmissziós rácsokat úgy állítják elő, hogy tiszta üveglemezre gyémánt tűvel párhuzamos vonalakat karcolnak. A reflexiós rácsok esetében a karcolásokat fémlapra ejtik. Ezek a rácsok az interferenciajelenséget visszavert fényben szemléltetik.

Forrás: http://alag3.mfa.kfki.hu/mfa/nyariiskola/02c_Szerkezeti_szinek/index.htm

A modern transzmissziós rácsokat úgy készítik, hogy az üveglemezre párologtatással vékony alumínium füstréteget visznek fel. Erre korszerű technológiával centiméterenként 5000-10000 metszést karcolnak. Mivel ez az eljárás nagyon költséges, ezért a már elkészített rácsok felhasználásával készülnek az ún. replikáta rácsok. A replikáta rácsok késztése során a már meglévő transzmissziós rácsot sablonként használják. Átlátszó kollódium-oldatot öntenek a rácsra, majd az oldat megkeményedését követően óvatosan leválasztják a sablonról. Az így kapott vékony réteget üveg vagy műanyag lapra rögzítik, majd keretbe foglalják. Ezeken a lemezeken a sablon karcolásainak a helyén barázdák keletkeznek, a barázdák között pedig átlátszó világos csíkok. A replikáta rácsra eső fényt ezek a világos csíkok átengedik, tehát ezek viselkednek a résekként. A barázdák a fényt minden irányban szórják, így a fényt nem engedik át, matt üvegként viselkednek. A 43. ábrán egy ilyen replikáta

ráccsal előállított a karunkon készült laboratóriumi felvétel látható.

43. ábra