Ugrás a tartalomhoz

Fotogrammetria 6., 6 A földi fotogrammetria

Dr. Engler Péter (2010)

Nyugat-magyarországi Egyetem

6.3 A földi fotogrammetria felvételi elrendezései

6.3 A földi fotogrammetria felvételi elrendezései

Mint ismeretes a fotogrammetriában síkfotogrammetriáról (ortofotoszkópiáról) és térfotogrammetriáról beszélünk. A földi fotogrammetriai felvételi elrendezések ennek megfelelően csoportosíthatók:

  • egyképes eljárásra,

  • térfotogrammetriai eljárásra.

6.3.1 Egyképes eljárás

Ha a lefényképezendő tárgy sík, vagy síknak tekinthető, és a méréseink során elegendő a mért pontok kétdimenziós meghatározása, akkor a tárgyról csak egy felvételt készítünk. Természetesen, ha egy felvétellel az egész mérendő felület nem fedhető le, akkor több képet készítünk, de nem szükséges a képek közötti nagy átfedés, hanem csak arra törekszünk, hogy hézagmentesen lefedjük az egész területet. Az egyképes eljárás során a felmérendő tárggyal szemben, a tárgy méretét figyelembe véve olyan Y távolságra állunk fel (6-3. ábra) a földi felvevő kamerával, hogy a tárgy rajta legyen a képen.

6-3. ábra Egyképes elrendezés

A felvételi hely meghatározásához az Y távolság könnyen kiszámítható, ha ismerjük a fényképezendő tárgy méreteit, a fényképező kamera képméretét és kameraállandóját. Kiszámítjuk a kép méretarányszámát az képlet segítségével, majd ebből az Y távolságot az képlettel. A terepen az álláspontot kitűzzük, majd felállunk rá. A fénykép elkészítése előtt ellenőrizzük, hogy a tárgy tényleg rajta van-e a képen és a képsík párhuzamos-e a fényképezendő síkkal. A felvételek elkészítése és előhívása, vagy megjelenítése után a mérőképen mérni tudjuk a meghatározandó pontok képkoordinátáit, majd a következő képletekkel számítjuk a tárgykoordinátáit:

és .

Mint az ábrán is látható, kétféle Y távolságunk van. Az YA a kitűzött felvételi álláspont és a fényképezendő tárgy távolsága. Erre a pontra állunk fel, és a kameránk állótengelye ezen a ponton megy át. Az YF távolság a vetítési középpont és a fényképezendő tárgy távolsága. A két távolság közötti különbség abból adódik, hogy a kamera állótengelye és az objektív főpontja nem esik egybe, azaz számolnunk kell az „a” (1. ábra) külpontossági értékkel. Erre csak akkor van szükség, ha a koordinátákat a fényképezési adatok alapján számoljuk. Ha a kiértékelés illesztőpontok felhasználásával történik, akkor ezt nem vesszük figyelembe.

Az időben változó folyamatok (pl. mozgásvizsgálatok) vizsgálatánál ugyanazon álláspontról időbázissal készített felvételeken a pontok vízszintes és magassági értelemben is elmozdulhatnak. A vizsgált tárgy elmozdulása következtében vízszintes és haránt irányú parallaxisok keletkeznek, emiatt egy modell jöhet létre. Ez a modell természetesen nem valódi modell, de mérhető, és a vizsgált tárgy elmozdulása, torzulása, annak iránya és mértéke meghatározható. A képkoordinátákból számított különbségeket alakváltozási parallaxisoknak nevezzük: és .

Az alakváltozási parallaxisok alapján számolható az elmozdulás:

és , ahol m a kép méretarányszáma.

6.3.2 Térfotogrammetriai eljárás

A fotogrammetriában is a mérendő pontok háromdimenziós meghatározására törekszünk, amihez a mérendő tárgyról legalább két képet kell készítenünk úgy, hogy mindkét képen a mérendő tárgynak rajta kell lenni. A mérési célra készülő fényképeket ismert vízszintes és magassági adatokkal rendelkező álláspontokról készítjük, ahol a kameratengelyek irányát beállítjuk.

A földi fotogrammetriában a két álláspont által kijelölt felvételi bázis és a kameratengelyek iránya szerint a következő alapeseteket különböztetjük meg (6-4. ábra):

6-4. ábra Földi felvételi elrendezések

a) normál sztereogram b) oldalra tartó képpár

c) konvergens tengelyű képpár d) általános helyzetű képpár

A földi fotogrammetria alapesete, amelynél a két kameratengely a felvétel bázisára merőleges és vízszintes. Az ilyen képpárt normál sztereogramnak nevezzük. Normál sztereogram esetében az általános helyzetű P pont X, Y és Z koordinátái egyszerű alapképletekkel könnyen meghatározhatók. A képletek levezetéséhez szükséges elrendezést és adatokat a 6-5. ábra mutatja.

6-5. ábra A normál sztereogram

Az O1 és O2 felvételi álláspontokról készített képek síkja a kameratengelyek merőlegessége miatt párhuzamosak a tárgykoordináta-rendszer X tengelyével. A P pont képe a bal képen P1’, a jobb képen P1’’, képi koordinátái ξb, illetve ξj. A P pont Y koordinátáját két hasonló háromszög alapján vezethetjük le. A bal képnél a jobb képre menő vetítősugárral húzott párhuzamos által szerkesztett háromszög hasonló az O1, O2, P háromszöggel. A bal képnél szerkesztett háromszög alapja a képkoordináták különbségéből számítható parallaxis, a pξ. A pξ-t bázisirányú parallaxisnak nevezzük, és az adott pont bal illetve jobb képen mért képkoordinátájának különbségéből kapjuk: . Ezután felírhatjuk az aránypárt. Ebből kifejezzük Y-t:

A P pont X koordinátája ugyancsak hasonló háromszögek alapján kifejezhető: .

Ebből kifejezzük X-et, majd az egyenletbe behelyettesítjük az előbb felírt Y-t. Elvégezve az egyszerűsítéseket a következő képletet kapjuk:

A P pont Z koordinátájának levezetéséhez az YZ metszetet kell megszerkeszteni (ezt itt mellőzzük) és az X-hez hasonló módon felírhatjuk az aránypárt: . Ebből .

A mérőképen leképződött összes pont koordinátája a fenti egyszerű képletek segítségével számítható. A normál sztereogram előnye, hogy a számításhoz nincs szükség illesztőpontra, elegendő ismerni a felvételi bázis pontos értékét, illetve a meghatározandó pontok képkoordinátáit, illetve a ponthoz tartozó bázisirányú parallaxist [8.].

A mai gyakorlatban a képek kiértékelése analitikus vagy digitális módszerrel történik, ahol nem a fenti egyenleteket használjuk. Ugyanakkor a normál sztereogramot, mint felvételi elrendezést a mai gyakorlatban is használjuk, hiszen az ilyen elrendezésű képpár biztosítja a mérendő pontokra menő legkedvezőbb előmetsző irányokat.

Az oldalra tartó (6-4. ábra b) és a konvergens tengelyű képpárok (6-4. ábra c) esetén a kameratengelyek a bázissal tetszőleges szöget zárhatnak be (de lényeges, hogy a mérendő tárgy mindkét képen rajta legyen) és vízszintesek. A mérendő pontok koordinátáit még viszonylag egyszerű képletekkel számíthatjuk úgy, hogy itt sem szükséges illesztőpont. A gyakorlatban ezeket nem használjuk, így itt a képleteket nem részletezzük.

Az általános felvételi elrendezésnél (6-4. ábra d) a kameratengelyek iránya hasonló az előző három elrendezéssel, de abban eltér, hogy a kameratengely már nem vízszintes. A dőlt tengelyű felvételek kiértékelése bonyolultabb feladat, amihez már illesztőpontokra van szükség és analitikus, vagy digitális fotogrammetriai kiértékeléssel dolgozunk.

Megjegyezzük, hogy már akkor is általános elrendezésről beszélünk, ha bármelyik vízszintes elrendezés mellett α értéke eltér 0-tól.