Ugrás a tartalomhoz

Geodéziai hálózatok 7., 1D-2D-3D együttműködés, nyilvántartás

Dr. Busics György (2010)

Nyugat-magyarországi Egyetem

7.3 Vízszintes alappontsűrítés műholdas helymeghatározással

7.3 Vízszintes alappontsűrítés műholdas helymeghatározással

7.3.1 Negyedrendű pontpótlás és pontáthelyezés GPS-szel

A vonatkoztatási rendszer a geodéziai gyakorlatban csak akkor valósítható meg, ha fizikailag léteznek olyan alappontok, amelyek koordinátái az adott rendszerben ismertek. Az országos vízszintes alapponthálózat fenntartása ezért fontos érdekünk. A GPS-korszakban vitatott kérdés, hogy szükség van-e az eredeti pontsűrűség fenntartására? Ezt itt most nem részletezzük, de megállapíthatjuk, hogy alappontokra szükség van. A földmérési törvény rendelkezik arról, hogy az országos alapponthálózatok pontjait védelem illeti meg, az alappontok megóvásáról a terület tulajdonosának kell gondoskodnia. Amikor egy régi alappont helyett újat kell létesíteni, kétféleképpen járhatunk el, illetve két esetet különböztetünk meg.

Pontáthelyezésről beszélünk akkor, ha a régi pont még létezik és az még bevonható az új pont meghatározásába. Ilyen eset fordul elő akkor, ha egy beruházás, építkezés miatt az alappont „útban van”, a terület gazdája ismeri a törvényt és a megyei földhivatalnál kéri a pont áthelyezését. Irány- és távméréses technológiánál a szakmai gyakorlat ilyenkor az, hogy állandósítják az új pontot, úgy választva ki annak helyét, hogy – a kitűzés összes szempontján túlmenően – a régi, de elbontásra ítélt ponttal is meglegyen az összelátás. Mind az új, mind a régi pont iránymérési álláspont lesz, mindkét pontról több ismert pontra történik irány- és távmérés, beleértve a régi-új pont közti távolság megmérését is.

Pontpótlásról akkor beszélünk, ha az alappont elpusztult és annak közelében kell új pontot meghatározni. Ez is történhet irány- és távméréssel, azonban a gyakorlatban rendszerint igen nehéz és költséges a negyedrendű meghatározásnak megfelelő feltételek biztosítása: többnyire ideiglenes pontjelek építésére lenne szükség, ami gazdaságtalanná tenné a munkát. Ezért az utóbbi években mind a pontpótlás, mind a pontáthelyezés tekintetében a GPS technika került előtérbe. Alapvetően most is azt a munkafolyamatot követjük, amelyet a 5. modulban bemutattunk, de néhány speciális körülményt, szabályt érdemes kiemelni.

Az előkészítés során fontos teendő a munkaterület új pontjainak kiválasztása a GPS-mérhetőség figyelembevételével, valamint az adott pontok kiválasztása, adataik beszerzése. Az adott pontok darabszáma országos vízszintes alappontok meghatározásakor így alakul:

  • Harmadrendű pontpótlás esetén a mérésekbe be kell vonni minimálisan három szomszédos harmadrendű alappontot és két OGPSH pontot.

  • Negyedrendű pontpótlás esetén minimálisan három ismert negyedrendű illetve magasabb rendű alappontot kell bevonni, amiből kettő OGPSH pont legyen.

A mérésnek a felhasználó által pontonként meghatározandó két legfontosabb adata a pontszám és az antennamagasság, amiket – más műszerparaméterekkel együtt – dokumentálni kell. A beírás történhet adatrögzítő egységet alkalmazva (terminál, kontroller), a mérési fájlhoz hozzárendelve, elektronikusan, vagy manuálisan. Kontroller hiányában (amikor csak a nyers mérési adatok kerülnek rögzítésre) kötelező terepi mérési jegyzőkönyvet vezetni. Nem javasoljuk valamely terepi mérési jegyzőkönyv általánosítását, mert annak tartalma erősen függ az alkalmazott műszertől és mérési technológiától. Tapasztalat szerint még kontroller esetén is célszerű saját készítésű terepi jegyzőkönyvet vezetni.

Az OGPSH pontokon az eredeti anyaponton történjen minden GPS mérés, elkerülendő a fejelőkő vízszintes vagy magassági külpontos elhelyezéséből eredő hibákat. Csak olyan vektort szabad elfogadni és a továbbiakban felhasználni, amelynél a fázis-többértelműség (phase ambiquity) egész (fix) számként volt meghatározható. A térbeli koordináták számítását térbeli hálózatkiegyenlítéssel kell végezni. A transzformációt OGPSH pontok és más országos alappontok bevonásával kell végezni. A mérést és a számítást dokumentálni kell, megőrizve az eredeti mérési eredményeket is.

7.3.2 Felmérési alappontsűrítés GPS-szel

Az 1990-es évektől kezdődően Magyarországon ezres nagyságrendben határoztak meg felmérési alappontokat GPS technológiával. A GPS előnye az irány- és távméréses módszerrel szemben elsősorban a gyorsaság és a gazdaságosság. Az előnyök abból fakadnak, hogy nem szükséges összelátás a pontok között, a bázistávolság elérheti a 20 km-t, kedvezőtlen időjárási körülmények (köd, eső) között is végezhető a mérés. Tömeges (százas nagyságrendű) pontsűrítésre azokon a nagyobb településeken került sor, ahol a Nemzeti Kataszteri Program keretében a település új felmérését végezték földi eljárással (elsősorban mérőállomással). Gyakran alkalmazzák a GPS-t olyan pontszegény területen, ahol csak egy-két alappont meghatározása szükséges és ehhez a GPS technológia a leggazdaságosabb megoldás.

A felmérési alappontok kitűzésénél fontos szempont a felmérés (kitűzés) céljának, szempontjainak figyelembevétele, ugyanakkor a GPS-mérhetőségre (a szabad kilátású égboltra) is törekedni kell. Általában a felmérési alappontok kitűzéséről írottakat (3. modul) és az általános GPS technológiáról írottakat (5. modul) együttesen kell figyelembe venni.

Érdemes elkülöníteni két esetet, aszerint, hogy a felhasználó autonóm módban mér (csak a saját mérőfelszerelésére támaszkodik) vagy igénybe veszi az aktív hálózat szolgáltatásait.

Az 1990-es évek elejétől a 2000-es évek elejéig, amikor nem volt kiépített aktív hálózat, poláris elrendezés esetén a felhasználónak kellett gondoskodnia a bázisvevő üzemeltetéséről. A bázisvevőt nagyon gyakran nem ismert ponton helyezték el, hanem olyan, GPS mérésre ideális helyen, ahol nem volt szükség őrző személyre. Nagyobb településen akár több ilyen ideiglenes referenciapont kiválasztására volt szükség. Az első ütemben az ideiglenes referenciapontok alkotta ún. kerethálózat meghatározására került sor. A második ütemben történt az új felmérési alappontok mérése, rendszerint háromnál több vevő szinkron észlelésével, gyors statikus módszerrel. A több vevő és a szinkron észlelések miatt lehetőség volt ún. napi hálózatok kialakítására illetve kiegyenlítésére.

7-8. ábra. Veszprém kerethálózata (ennek egyik pontja szolgált referenciaként a napi hálózatoknál)

Ahogyan a 2000-es évektől fokozatosan kiépült Magyarországon is a permanens állomások alkotta aktív GPS hálózat (az ún. GNSS infrastruktúra), újabb lehetőségek adódtak a hatékonyság növelésére. A permanens állomások (továbbá a virtuális pontok) nyers mérési adatai a GNSS Szolgáltató Központból Interneten keresztül letölthetők akár utófeldolgozáshoz, akár valós idejű méréshez. Mivel a GPS-vevők és szoftverek is lényeges fejlődésen mennek keresztül, a ciklustöbbértelműség nemcsak 10-20 km-en belül oldható fel egész számként, hanem ennél lényegesen nagyobb távolságokon is. Mivel a Virtuális Rinex szolgáltatás is működik, bárhova generálhatók referencia-adatok, így célszerűen 5 km-en belüli vektorokat kell csak kiértékelni, akár egyfrekvenciás vevőkhöz is. Lehetőség adódik a cm-es pontosság elérésére félkinematikus (stop and go) módszerrel is, akár utófeldolgozással, akár valós időben. Az alappontokkal szemben támasztott követelmények (1. modul 3.2 fejezet), a felmérési alappontok kitűzési szempontjai és az általános GPS technológia elemei érvényben maradnak, de a lehetőségek bővülnek. Nézzük meg, hogy az adott pontok kiválasztásánál milyen lehetőségek közül választhatunk.

  • Autonóm módban (vagyis amikor a felhasználó maga biztosítja a referenciavevőt), gyors statikus technológiánál, legalább két ismert pontra kell támaszkodnia a meghatározásnak. Az adott pont közül legalább egy OGPSH pont legyen.

  • Az aktív hálózatra támaszkodva (amelyet Magyarországon a GNSS Szolgáltató központon keresztül érhetünk el), két vagy több permanens GPS állomás vagy virtuális Rinex adatok bevonásával biztosíthatjuk az adott pontokat.

  • Egyetlen permanens állomás is elegendő, ha legalább két GPS vevővel, szinkron észlelésekkel végezzük a meghatározást. Ez esetben ellenőrzésül be kell mutatni a vektorzárás(oka)t, vagy hálózatkiegyenlítést kell végezni.

  • Egyetlen permanens állomásra (vagy virtuális pontra) támaszkodhatunk akkor is, ha a meghatározott alappontok és más adott vízszintes alappontok között földi méréseket végzünk. A földi irány- és távmérések szolgálhatnak csak ellenőrzést, de helyesebb, ha a vízszintes hálózat kiegyenlítésével a vízszintes koordináták meghatározásában is részt vesznek.

  • Egyetlen permanens állomásra támaszkodhatunk, ha ugyanarra az új alappontra legalább két független mérést végzünk. A függetlenséget azzal biztosíthatjuk, hogy időben elkülönülten (kétszer) végzünk mérést. Ha az új pont felkeresése csak egyszer történik (lásd az OGPSH mérését – 5. modul), akkor a pontraállást mindenképp kétszer kell végrehajtani, eltérő antennamagassággal.

7.3.3 A magaspontok és a GPS

A magaspontok szerepével és a magaspontlevezetés műveletével a 2. modulban foglalkoztunk. A hagyományos hálózatmérés során többnyire először a magaspont koordinátáit határozzuk meg, majd ezek ismeretében később kerül sor egy olyan terepszinti pont meghatározására, amelynek célja a földi mérésekkel való csatlakozás biztosítása. Földi mérésnél a fordított sorrend is lehetséges: a magaspont mellett sokszögvonallal elhaladva, e sokszögpontokról, mint levezetett pontokról is meghatározható a magaspont.

GPS-mérésnél is először a felszíni alappontok kapnak koordinátát. Ilyen értelemben magaspont-levezetés helyett "felvezetésről" lehetne beszélni, mégis jobb híján a levezetett pont kifejezést tartjuk meg, mert e földi alappont – amelyet a rendűségnek megfelelően állandósítani kell – ugyanazt a szerepet tölti be, mint hagyományos esetben.

A földi irány- és távméréses módszerekkel a szakmai követelmények betartása mellett a magaspontok meghatározása rendszerint nem gazdaságos, ezért került előtérbe a GPS módszer. A magaspontfelvezetés során előbb egy földi mikrohálózat (más néven őrhálózat) pontjainak koordinátáit határozzuk meg a magaspont közvetlen környezetében, majd ezekről a pontokról előmetszéssel történik a tulajdonképpeni magaspont mérése-számítása. A GPS előnye jelen esetben az, hogy viszonylag távoli ismert alappontból, gyorsan és hatékonyan teszi lehetővé a mikrohálózat legalább egy pontjának (a levezetett pontnak) vagy akár az összes mikrohálózati pontnak a meghatározását. A munkafolyamatot három részre különíthetjük el:

  • GPS mérés (levezett pont meghatározása)

  • Mikrohálózat mérése (GPS-szel vagy földi úton)

  • Irányméréses pontmeghatározás (magaspont előmetszése)

Az állandósított levezett pont GPS mérésének legalább két adott pontra (OGPSH pontra) kell támaszkodnia, legyenek független vektorai, tehát ne egyetlen mérési periódusban, azonos műszer-felállítás mellett történjen a mérés. A GPS-meghatározásnál az 1 cm-es pontosság elérésére kell törekedni, így a gondos pontraállás és antennamagasság mérés, megfelelő időtartamú mérési periódus fontos követelmények. Gyorsítja a munkát a kombinált műszerfelszerelés használata. Olyan mérőállomást illetve teodolitot használhatunk, amelynek alhidádé oszlopaira a GPS antenna központosan ráhelyezhető. Így az iránysorozat mérésével egyidejűleg a gyors statikus mérés is megtörténhet.

A magaspont körüli mikrohálózat rendszerint 3-6 pontból áll, célja, hogy pontjairól a magaspont tisztán iránymérésekkel jó geometria mellett meghatározható legyen. A mikrohálózat pontjai (közülük egyik a levezetett pont), célszerűen körbeveszik a magaspontot, attól néhányszor tíz métertől néhányszor száz méteres távolságban helyezkednek el. A mikrohálózati pontoknak a magasponttól való távolságát több körülmény, így a fedettség, a domborzati viszonyok, a takarások, a pontjel alakja stb. befolyásolja. A körülményektől függően a magasponthoz minél közelebbi elhelyezés az előnyösebb, mert ekkor a műszerek áthelyezése gyorsabban megoldható, felügyeletük biztosított. A rövid meghatározó irányok egyértelmű irányzást tesznek lehetővé; az iránymérés középhibája kisebb lineáris eltérést jelent a rendes hálózati irány-hosszakhoz viszonyítva.

A mikrohálózat GPS-es mérésére a gyors statikus, a félkinematikus vagy az RTK módszer egyaránt ajánlható. A mérést elvégezhetjük a levezett ponttal egyidőben, de egy későbbi ütemben is. Ez utóbbi esetben a referenciapont a már ismert levezetett pont lesz.

A mikrohálózat pontjainak kitűzésénél alapvetően ugyanazokat a szempontokat kell alapul venni, mint a levezetett pont esetében. Ha sikerül biztosítani, hogy a pontokról távoli tájékozó irányok, szomszédos pontok továbbá a magaspont is látható, és az összes pont GPS mérésre is alkalmas, – akkor ez ideális helyzetnek tekinthető. Ha a levezetett pont szomszédjai őrpontként állandósíthatók, akkor mikrohálózatunk egy része a hagyományos őrhálózatnak is megfelel.

Az ideális mikrohálózat létesítésének feltételei a valóságban rendszerint nem teljesíthetők, így engedményekre kényszerülünk. Ha nem láthatók távoli tájékozó pontok, tájékozó irányként megelégszünk a mikrohálózat egy vagy két szomszédos pontjával. Ha a szomszédos pontok között sem biztosítható összelátás, akkor a tájékozó pontokat alkalmas helyen kitűzzük és GPS-szel meghatározzuk. Ezen tájékozó pontok csak a mérés idejére, ideiglenesen jelölt pontok lesznek, így vesztett pontnak tekinthetők. Ha a mikrohálózat pontjai sem állandósíthatók, mert alkalmatlan helyre esnek, akkor azok is lehetnek vesztett pontok. Ha a mikrohálózat pontjai a fás, ligetes, magasházas környezet miatt nem alkalmasak GPS mérésre, akkor hagyományos irány- és távméréses hálózatként kell elvégezni mérésüket.

7-9. ábra. Mérőállomás (teodolit) és GNSS-vevő együttese

Az irányméréses pontmeghatározás során a magaspontot végső soron a mikrohálózat pontjairól teodolittal, tisztán iránymérésekkel határozzuk meg. Arra törekszünk, hogy legalább három, de inkább négy-öt, jó metszést adó előmetsző irányunk legyen. Annak ellenére, hogy itt most külön tárgyaljuk ezt a munkaszakaszt, a GPS-szel és a teodolittal történő mérést egyidejűleg, összehangoltan érdemes végezni. A mikrohálózat összes pontjára (akár állandósított, akár vesztett pontról van szó), a mérés előtt műszerállványt ajánlatos felállítani és a mérést kényszerközpontosítással elvégezni. A kényszerközpontos elhelyezés a GPS antennára, a teodolitra és a jeltárcsára, prizmára egyaránt értendő, mert az egyértelmű pontraállás és irányzás, valamint a gyors műszerfelállítás ezáltal biztosítható.

Tovább növelhető a mérés gazdaságossága, ha egy-egy állásponton egyidejűleg végzünk GPS mérést és teodolitos iránymérést. Ehhez biztosítani kell a GPS antennának a teodolit fölötti központos elhelyezését, ami a korszerű teodolitok fogantyújára vagy alhidádé-oszlopára viszonylag egyszerűen megoldható. A GPS-mérőállomás ugyanezt a szerepet tölti be.

Az iránymérés a rendűségtől függően egy-, vagy kétfordulós lehet és a magaspontra természetesen magassági szögmérést is végzünk. Ha a mikrohálózat nem minden pontja GPS-es pont, akkor teodolit helyett elektronikus tahiméterrel dolgozunk. A magaspontnak és az esetleges további mikrohálózati pontoknak a koordinátáit hálózatkiegyenlítéssel számoljuk, a GPS-szel meghatározott transzformált EOV koordinátákra, mint adott pontokra támaszkodva.