Rendszerszemlélet a matematika tanításában

Dr. Ceglédi, István
Rendszerszemlélet a matematika tanításában
Dr. Ceglédi, István

Publication date 2011
Szerzői jog © 2011 EKF

Copyright 2011, EKF
Tartalom

1. Rendszerszemlélet a matematika tanításában .. 1
 1. Bevezetés .. 1
2. Tanulási időszükséglet .. 1
3. Tanulási folyamat, tanulási módszerek .. 2
4. Célkitűzések, követelmények .. 2
5. A kurzus tananyagának tartalmi egységei .. 2
6. A halmazelmélet fogalomrendszer .. 3
7. A halmazok fogalomrendszerénél felépítése .. 3
8. A matematikai logika fogalomrendszer .. 8
9. A fogalmak, ismeretek rendszere .. 9
10. Kérdések, feladatok: ... 14
11. Kötelező irodalom: ... 14
12. A számfogalom ismeretrendszere ... 15
13. Kérdések, feladatok: ... 27
14. Kötelező irodalom: ... 27
15. A számmélet fogalomrendszer ... 28
16. A számmrendszerek fogalomrendszer .. 36
17. Kérdések, feladatok: ... 39
18. Kötelező irodalom: ... 40
19. Ajánlott irodalom: ... 40
20. Kérdések, feladatok: ... 55
22. Ajánlott irodalom: ... 56
23. A függvények, sorozatok, fogalomrendszer .. 57
24. Kérdések, feladatok: ... 94
25. Kötelező irodalom: ... 94
26. Ajánlott irodalom: ... 94
27. Az ismeretek rendszere ... 95
28. Kérdések, feladatok: .. 100
29. Kötelező irodalom: ... 100
30. Ajánlott irodalom: ... 100
31. A félév során 12 hétre tervezzen: ... 100
32. Záróvizsga tételek: ... 101
1. fejezet - Rendszerszemlélet a matematika tanításában

1. Bevezetés

Üdvözlöm!

Ez az elektronikus jegyzet azokhoz szól, akik tanulják, vagy tanulni akarják a matematikatanítást, illetve azokhoz, akik már matematikatanári diplomával rendelkeznek, és a tanítással kapcsolatos ismereteiket szeretnék megújítani.

A Rendszerszemlélet című jegyzet harmadik tagja egy matematika szakmódszertan tankönyvcsaládnak.

Az egyik jegyzet feldolgozása során, amelynek címe A matematika tanításának pedagógiai – pszichológiai vonatkozásai, képet kaphatunk a tanítás-tanulás alapelveiről, a matematikai ismeretszerzés pszichológiai alapjairól, a tanítási folyamat szervezési kérdéseiről, a tanításban alkalmazható munkaformákrol, módszerekrol, eszközökkről, továbbá a motívációs és értékelési rendszerekrol.

A másik jegyzetből, amely a Kompetenciaalapú matematikaoktatás címet viseli, arra a kérdésre kaphatunk választ, hogy miért tanítjuk a matematikát, milyen kompetenciaterületeket, milyen jártasságokat, készségeket, képességeket hogyan tudunk kialakítani, fejleszteni a matematikatanítás során.

Ez a harmadik jegyzet, pedig a mit tanítsunk matematikából, és hogyan biztosíthatjuk az egymásra-építettséget és a fokozatosságot, az a rendszerszemléletet a matematikatanítás során kérdésre ad választ.

Ebből a rövid ismertetőből, amely a Kompetenciaalapú matematikaoktatás címet viseli, arra a kérdésre kaphatunk választ, hogy miért tanítjuk a matematikát, milyen kompetenciaterületeket, milyen jártasságokat, készségeket, képességeket hogyan tudunk kialakítani, fejleszteni a matematikatanítás során.

A rendszerszemlélet a matematika tanításában jegyzet fő célkitűzései:
1. megmutatni a rendszert a matematikai ismeretekben,
2. kialakítani a rendszerszemléletet a tanárban és a tanulókban,
3. elősegíteni az ismeretszerzésnek a természetes tanulás útján történő megvalósítását,
4. példát adni a heurisztikára, az a felfedezetető tanításra – megfelelő mintapéldákon keresztül,
5. érzékelhetni a külső és belső koncentráció megvalósításának, továbbá a gyakorlati alkalmazásának a lehetőségét,
6. motivációs bázist kialakítani az életkornak és az érdeklődési köröknek megfelelő tananyagtartalommal.

Mindezekkel a matematikatanítás eredménytelenségeinek egyik fő okozóját, a rendszerszemlélet hiányát próbáljuk meg kiküszöbölni.

Richard R. Skemp kísérletei alapján megállapította, hogy több tanítványának azért volt nehéz a matematikai fogalmak elsajátítása, mert tanulásuk során nem fedezték fel az egyes fogalmak közötti kapcsolatot, nem látták meg a fogalmak, ismeretek rendszerét. Akik viszont könnyen boldogultak a matematikával, azokra kivétel nélkül jellemző volt a rendszerszemlélet. A felfedezetek a tananyag belső „struktúráját”, össze tudták kapcsolni egyéb tantárgyak fogalomrendszerével, tudták alkalmazni ismereteiket a gyakorlatban.

Ez a jegyzet azt hivatott megmutatni, hogy milyen matematikai ismeretrendszereket, hogyan tudunk kialakítani, hogyan tudjuk tanulónkat rábírni a rendszerszemléleitre.

2. Tanulási időszükséglet
A kurzus anyagának feldolgozása személyfüggő. Függ az olvasó előképzettségétől, a matematikai ismeretekben való jártasságától, készségétől, és nem utolsó sorban a módszertani kulturáltságától.

Azoknak a tanárjelölteknek, akik hiányos matematikai előképzettséggel érkeztek a felsőoktatásba, legalább egy félév esetleges, általában munka szükséges a tananyag elsajátításához. Ez a félév során legalább 4 órát jelent.

A szakmai alapok megszerzése után még legalább ugyanannyi idő szükséges ahhoz, hogy a leendő tanár összefüggéseivel – tehát rendszerben – is lássa a tanítandó anyagot. Mindenképpen elkerüldendő az, hogy önálló, különmúló leckéként – csak egy-egy tanórára koncentrálva – tanítsuk a matematika témaköröket, és a közük lévő kapcsolatot, az egymásra-építettséget, a fokozatosságot ne mutassuk meg. Ennek megtanulása a tanárjelölő részére időigényes feladat.

Gyakorlattal rendelkező matematikatanárok számára lényegesen kevesebb idő szükséges. Nekik elég egy félév heti 2 óra időtartammal. Feltételezzük, hogy ezeknek a tanároknak már nem jelent problémát a fontosabb definíciók, tételek kimondása, illetve a tételek bizonyítása. Nekik elég „csak” a rendszer szemléletre koncentrálniuk.

3. Tanulási folyamat, tanulási módszerek

Javasoljuk, hogy minden témakörnél építsük fel az úgynevezett „ismeretpiramist”, tanulják meg a bennük lévő definíciókat, tételeket, bizonyításokat, majd koncentráljanak a gyakorlati alkalmazásra, a problémamegoldásra.

Minden fejezet végén találnak feladatokat, kérdéseket. Ezek megoldásait az adott kurzust meghirdető oktatóknak kell beküldeni, aki értékelni fogja, és az értékelést – pozitívum, negatívum – ismerteti a hallgatóval.

Javasoljuk továbbá azt is, hogy a fejezetek végén közölt irodalmat is tanulmányozzák.

4. Célkitűzések, követelmények

Reményeink szerint a kurzus elvégzése után az olvasó

1. biztos szakmai tudásra tesz szert,
2. nem elkülöníti témakörökné, hanem szerves egységes egész részére tekinthetőségére – rendszerek – kezeli a matematikát,
3. megfelelő példákkal tudja megmutatni végén a fogalomrendszereket,
4. a verbális (értelme nélküli tanulás) ismeretszerzés helyett az értelmes, lényeget kiemelő, kapcsolatot feltáró természetes tanulást alakítja ki tanítványai.

5. A kurzus tananyagának tartalmi egységei

1. A halmazelmélet és a matematikai logika alapjainak tanítása
2. A számfogalom kialakítása, felépítése. A műveletek, struktúrák alapjai a természetes számoktól a komplex számokig
3. Származelmélet, oszthatóság, számnemzetszerek
4. A klasszikus algebra elemei. Algebrai kifejezések, polinomok, algebrai egyenletek, egyenlőtlenségek, egyenlőtlenségrendszerek
5. Relációk, függvények, sorozatok alapjainak tanítása
6. A szöveges feladatok ismeretrendszere.

Az egyes témakörök feldolgozását úgy próbáljuk megoldani, hogy az ismeretrendszerek megmutatásán túl a szakmódzsztani, didaktikai ismeretek, praktikák is felszínre kerüljenek. Ez ezzel a kezdő tanároknak kivánunk segítséget adni a tananyag optimális feldolgozásához.

Sikeres munkát kívánunk minden olvasónknak!
6. A halmazelmélet fogalomrendszere

A közoktatásban – az általános és középiskolában – nem halmazelméletet tanítunk annak axiomaticus felépítésével, tulajdonságai való, bizonyításaival, hanem „csak” olyan halmazelméleti alapot, amelyek segítenek a matematikai ismeretek rendszerszemleletű feldolgozásában. Valójában eszközjelleggel tanítjuk a halmazokkal kapcsolatos ismereteket. Olyan eszközök, amely segít az új fogalmak, ismeretek kialakításában, továbbá integrálja, rendszerezi a tanulók megfelelő ismeretét, tudását. Ebből adódóan a halmazelméletnek örvény jelentősége van a matematikai ismeretelsajátításban. A fentiekből az is következik, hogy már óvodás korban kialakítunk és alkalmazunk bizonyos egyszerű halmazelméleti ismereteket, és a középiskolai érettségi sem fejeződik be az ismeretrendszer kialakulása. Úgy bővíthetjük a témával kapcsolatos ismereteket, ahogy a matematika egyéb témakörein is ismertetni ezt lehetővé teszi, illetve megköveteli.

A következőkben megmutatjuk a halmazelméleti alapfogalmaknak egy felépítését, egy úgynevezett „fogalompiramist”, amelyet a tanítás során kövéthetünk úgy, hogy a rendszerszemlelet, azaz az egymásraépítettség, az alá-fölé rendeltség, a fokozatosság érvényesüljön.

7. A halmazok fogalomrendszerének felépítése

1. Halmaz, elem, eleme

Ezeket a fogalmakat nem definiáljuk. Az első kettőt alapfogalomként, a harmadikat axiómaként kezeljük.

(Természetesen, az itt mondottakat a középiskolában cél szerű elővenni, mert akkor érti meg a tanuló az alapfogalmak, axiómák lényegét.)

1. Konkrét halmazok megadása

Magát a halmazt nem tudjuk alacsonyabb szintű fogalomra visszavezetni (definiálni), de konkrét halmazokat már kisgyermekkorban tudunk értelmezni. (Megfelelő konkrét példákkal.) Például: páros számok, 10-nél kisebb pozitív számok stb.

A matematika minden témaköréhez tudjuk kapcsolni a konkrét halmazok megadását.

Ez egyébként kívánatos is, mert így mutatható meg – többek között – a tőbbi témával való kapcsolat is.

A konkrét halmazok megadásánál a következőkre kell nagyon figyelnünk:

Ennek alapján: az érdekes könyvek halmaza, a jó viccek halmaza, a magas fiúk halmaza stb. mondatókkal nem határozunk meg konkrét halmazt, mert a fenti állítások megtétele szubjektív.

Ugyanígy, ha a 2-t 5-ször beírom a {10-nél kisebb pozitív páros számok halmaza}-ba, ennek a halmaznak akkor is csak 4 eleme lesz, és nem 8.

1. Jelölések

A halmaz: A, B, C, (A latin abc nagybetűivel), vagy { }-lel.

Az elem: a, b, c, ... (A latin abc kisbetűivel), vagy konkrét jelekkel

(szám, személy, nap, hó, stb.).

Eleme: € nem eleme: £
1. A halmazok ábrázolása

1. Venn – diagram

2. Caroll – diagram

A Venn – diagramnál az elemeket azonos tulajdonság alapján soroljuk azonos halmazba, így az egyes részhalmazok között lehetnek „átfordítások” is (lásd halmazok uniója), míg Caroll – diagramnál úgy bontjuk részhalmazokra azt alaphalmazt, hogy az egyik halmazba kerülnek az azonos tulajdonságúak, a másikba ezeknek a tagadása.

Például: páros – nem páros,
hárommal osztható – hárommal nem osztható stb.

A Caroll – diagramra jellemző, hogy diszjunkt részhalmazokra bontjuk az eredeti halmazt. Mindkét ábrázolási módot meg kell mutatni a tanulóknak, és azt használjuk a kettő közül, amelyik az adott probléma megoldásakor a legmegfelelőbb.

1. A halmazok egyenlősége

Kezdetben, a fogalom bevezetésekor a következő definíciót használjuk: Két halmaz egyenlő, ha elemeik megegyeznek.

Ezt a definíciót konkrét példákon keresztül tudjuk szemléltetni, így már alsó tagozatban is bevezethető.

Miután a részhalmaz fogalmát tisztáztuk, természetesen a következő értelmezést is meg kell mutatnunk:

Két halmaz egyenlő, ha kölcsönösen részhalmazai egymásnak.

Ha A ⊆ B és B ⊆ A akkor A = B

1. Univerzum, üres halmaz

Mindkét fogalom kellő számú, megfelelő mintapéldával mutathatjuk meg a tanulóknak akár már az általános iskola felső tagozatában is.

Azért is fontos e két fogalomnak az alapos ismerete, mert mind a halmazműveleteknél, mind a matematika egyéb témaköréinek nélkülözhetetlen ismeretek.

Jelölésük: U; ∅.

(Felhívjuk a figyelmet egy gyakori hibára. Az üres halmaz jele nem ez: {∅ }, hanem ezek: { }, vagy ∅)

1. Részshalmaz, valódi részhalmaz

A definíciókat itt is megfelelő példákkal készíthük elő.

A ⊆ B, ha A minden eleme eleme B-nek is.

A ⊂ B, ha A minden eleme B-nek is eleme, de van B-nek legalább egy olyan eleme, ami nem eleme A-nak.

(Eenek Venn-diagrammal történő bemutatását és konkrét példákon való érzékelhetetlent az olvasóra bízzuk.)

E két fogalom kialakítása után kapcsolódhatunk egy másik témakör fogalomrendszeréhez, a relációkhoz, mintegy előkészítve azt.

A „részshalmaz” reláció tulajdonságait szerencsés már ekkor mintapéldákkal bemutatni.

a) A ⊆ A reflexív

b) Ha A ⊆ B és B ⊆ A, akkor A = B antiszimmetria
c) Ha $A \subseteq B$ és $B \subseteq C$, akkor $A \subseteq C$ tranzitív

Ezeket a tulajdonságokat akkor is megmutathatjuk, ha a reláció fogalma nem tisztázott a tanulók előtt. (Nem is szükséges „idő előtt” definiálni sem a reláció fogalmát, sem a fent említett tulajdonságokat.)

A valódi részhalmazra is megfogalmazhatók a tulajdonságok, és bemutatásuk szintén konkrét példákkal valósítható meg.

a) $A \subset A$, hamis antireflexív reláció

b) Ha $A \subset B$ akkor $B \subset A$, hamis, aszimmetrikus reláció

c) Ha $A \subset B$ és $B \subset C$, akkor $A \subset C$ igaz, tranzitív reláció

A Venn-diagrammal történő ábrázolás segít a tulajdonságok felismerésében.

1. Műveletek halmazokkal

A binér művelet fogalma nagyon absztrakt, így még a középiskolai tanulók zöme sem tudja felfogni a következő definíció lényegét, nemhogy az általános iskola.

Az S nem üres halmaz $S \times S$ Descartes-szorzatának S-be való leképezését az S halmazon értelmezett műveletek nevezzük.

A definíció helyett itt is a konkrét matematikai példákat hívjuk meg. A tanulók már kisiskolás korban megjegyzik, hogy két természetes szám összege, szorzata is természetes szám, hogy páros számok összege páros, páratlan számok szorzata páratlan stb. Tehát egyszerű példákon szépen kiemelhető a binér műveletek – és ezen túl a többváltozós műveletek – lényege, tulajdonságai stb.

Ebből a megközelítésből következik, hogy két, vagy több halmazzal végzett művelet eredménye is halmaz.

Például:

- nem helyes az a definíció, hogy két halmaz metszetén olyan elemeket értünk, amelyek mindkét halmaznak elemei, hiszen két halmaz metszete nem elem lesz, hanem halmaz.

- A metszet helyes definíciója:

 Két, vagy több halmaz metszetén azon elemeik halmazát értjük, amelyek mindegyik halmaznak elemei.

 (A többi műveletet nem definiáljuk, mert feltételezzük, hogy ezt a jegyzetet a matematikát tanuló, értő emberek olvassák, és tudják értelmezni ezeket a fogalmakat. A Hajdu Sándor szerkesztésében megjelent Matematika 9. a Műszaki Könyvkiadó által megjelent tankönyvben megtalálhatók a halmazelméleti alapok.)

 A továbbiakban csak felsoroljuk az általános és középiskolában tanítandó halmazműveleteket és azok tulajdonságait, és az olvasóra bízzuk annak diagramokkal történő bemutatását, bizonyítását, illetve konkrét matematikai példákkal való szemléltetését.

1. Halmazok uniója

 Idempotens, kommutatív, asszociatív művelet.

1. Halmazok metszete

 Idempotens, kommutatív, asszociatív művelet.

 A metszetnél célserű megemlíteni a halmazok diszjunktáságát, mert később nagy szükség lesz erre az ismeretre.

 Ha $A \cap B = \emptyset$, akkor az A és B halmazok diszjunktak.

 (Nincs közös elemük.)
Rendszerszemlélet a matematika tanításában

A két művelet tárgyalása után célszerű megmutatnunk a disztributív törvényt, természetesen konkrét példákon keresztül és felhasználva a Venn-diagramos ábrázolást a bizonyításhoz.

\[(A \cup B) \cap C = (A \cap C) \cup (B \cap C)\]
\[(A \cap B) \cup C = (A \cup C) \cap (B \cup C)\]

Érdekességréve megmutatjuk és bizonyíthatjuk az abszorbcíos (elnyelési) tulajdonságot is.

\[A \cup (A \cap B) = A; A \cap (A \cup B) = A\]

Ez utóbbiak természetesen már csak a középiskola magasabb évfolyamán tárgyalandók és a jó képességű tanulóknak ajánlottak.

1. Halmazok különbsége, szimmetrikus különbsége

Az \(A \setminus B\) azon elemek halmaza, amelyek elemei A-nak, és nem elemei B-nak.

A különbség nem idempotens és nem kommutatív.

Az \(A \Delta B\) szimmetrikus különbség azon elemek halmaza, amelyek a két halmaz közül pontosan az egyiknek elemei.

Nem idempotens, kommutatív.

Ezek a tulajdonságok is szépen megmutathatók különböző matematikai példákon keresztül.

Például:

\(A = \{2\text{-vel osztható természetes számok}\}\)
\(B = \{3\text{-mal osztható természetes számok}\}\)
\(U = \{20\text{nál kisebb természetes számok}\}\)
\(A \setminus B = \{2; 4; 8; 10; 14; 16\}\)

A húsznál kisebb, 2-vel osztható, és 3-mal nem osztható természetes számok halmaza.

\(B \setminus A = \{3; 9; 15\}\)

A húsznál kisebb, 3-mal osztható, 2-vel nem osztható természetes számok halmaza.

Rögtön szemebetűnik, hogy \(A \setminus B \neq B \setminus A\), azaz nem kommutatív művelet, továbbá egy egyszerű, mindenki által érthető példán még az is megmutatható, hogy

\[A \setminus B = A \cap \overline{B}\] és \(B \setminus A = B \cap \overline{A}\).

(Ez természetesen a komplementer fogalmának elsajátítása után történhet meg.)

Az \(A \Delta B = \{2; 4; 8; 10; 14; 16; 3; 9; 15\}\)-ből pedig a szimmetrikus különbség definíciója, illetve a művelet kommutatív volta erősíthető meg, továbbá megmutatható, ha

\(A \Delta B = (A \setminus B) \cup (B \setminus A)\) teljesül.

1. Halmazok komplementere

A halmaz \(U\)-ra vonatkozó komplementerén azon elemek halmazát értjük – és \(\overline{A}\)-sal jelöljük – amelyek elemei \(U\)-nak (univerzum, alaphalmaz) és nem elemei A-nak.

A komplementernek is nagy szerepe van a matematika egyéb témaköreinek tanításánál, így az előző példához hasonló módon mindenképpen szükséges a következő tulajdonságokat bevezetnünk.
Rendszerszemlélet a matematika
tanításában

a. \[\overline{A} = U / A \]

b. \[A \cup \overline{A} = U \quad A \cap \overline{A} = \emptyset \]

c. \[\overline{A} = A \]

d. \[A \cup B = \overline{A} \cap \overline{B} \]

e. \[A \cap B = \overline{A} \cup \overline{B} \]

Ez utóbbi kettőt nevezzük De Morgan törvényeknek.

Mint azt korábban írtuk ezeket az ismereteket nem definícióként, általánosan közvetítjük a tanulóknak, hanem megfelelő példák sokaságát nyújtva, mintegy felfedezetjük azokat. Ahogy bővül a tanulók matematikai ismeretrendsze, úgy bővülhet a halmazelmélettel kapcsolatos ismeretek rendszere is.

Az eddigi halmazelméleti ismeretek szükségesek voltak ahhoz, hogy a számfogalmat „magasabb szintre” helyezzük, hogy megismerkedjünk a „véges”, illetve a „végtesen” fogalmával. A Hajdu-féle középiskolai tankönyvcsalád 10. osztályos tankönyvében találjuk először a számosság értelmezését.

1. Halmazok számossgága

Konkrét véges halmazokkal megmutatjuk, hogy azoknak hány valódi részhalmaza van, ezen részhalmazoknak hány elemük van és ezek között milyen kapcsolat van. Az azonos elemszámú halmazok között kölcsönösen egyértelmű megfeleltetést tudunk létesíteni. Ezek vizsgálata után jöhet a felfedezés, a sejtés és a definíció.

10. Halmazok ekvivalenciája

Két halmaz ekvivalens egymással, ha számossguk egyenlő, azaz a két halmaz elemei kölcsönösen megfeleltethetők egymásnak.

Sok-sok egyszerű példán keresztül célszerű megmutatni, azt a komoly absztrakciót igénylő ismeretet, hogy mikor véges és mikor végtelen egy halmaz.

Egy halmazt végesnek nevezzük, ha nincs olyan valódi részhalmaza, amely vele egyenlő számossgágu. Ezt véges halmazok valódi részhalmazainak felsorolátatásával reprezentálhatjuk.

Ezután jön a tanulók számára az a szinte érthetetlen megállapítás, hogy egy halmaz valódi részhalmazának lehet ugyanannyi a számossgá, mint az őt tartalmazónak.

Ilyen kérdéssel és a rá adott helyes válaszgal lehet a tanulókat meghökkenteni: Természetes számból, vagy páratlan természetes számokból van több?

Az előbbiekben leírt példákön keresztül juthatunk el a számfogalom kialakításához nélkülözhetetlen ismeretekig.

Nevezetesen:
1. a természetes szám, mint a véges halmazok számossága,
2. megszámlálhatóan végtelen halmazok,
3. nem megszámlálhatóan végtelen halmazok,
4. kontinuum számosság.

Az ilyen megalapozás után kapcsolhatjuk össze a halmazelméletet a számfogalom kiépítésével.

1. A természetes számok halmaza megszámlálhatóan végtelen.
2. A racionális számok halmaza ekvivalens a természetes számok halmazával.
3. A valós számok halmaza nem megszámlálhatóan végtelen.

Ez utóbbiak igazolására szükséges a Descartes-szorzat fogalmának kialakítása, hiszen bármely egész számnak, racionális számának megfeleltethető a rendezett elem-párok egy jól meghatározott halmaza. (Lásd az egészek és a törték fogalmánál.)

A számfogalom kialakításán túl a halmazelmélet jelentős szerepet játszik minden témakörnél. Néhány példa ezekre:

2. Relációk, függvények, sorozatok – halmazok közötti megfeleltetések.

Mindezek azt mutatják, hogy a halmazelmélet alapjainak tanítása-tanulása nagyon hangsúlyos helyet foglal el matematikatanításunkban, és ennek megfelelő fontossággal kell kezelnünk.

8. A matematikai logika fogalmomrendszeré

A matematika nyelve úgy aránylik a közönségi nyelvhez, mint Wertheimkulcs a sperhaknihoz, írja Andre Revuz egy munkájában. (Wertheimkulcs = bonyolult, nagy precizitású záракhoz készített kulcs; sperhakni = állokulcs, tolvakulcs, általában egy vasszegből hajlított, lapított végű egyszerűbb záракat nyitó eszköz.)

Amit a közönségi nyelvben a kommunikáció során megengedhetünk magunknak, azt a pontatlanságot nem engedhetjük meg a matematikában. Nem mondhatunk „és” helyett „vagy”-ot, „legalább” helyett „legfeljebb”-et, „akkor” helyett „pontosan akkor”-t stb., mert ezáltal a matematikai kifejezések lesznek pontatlanok.

Például nem mindegy, hogy egy egyenlőtlenség megoldása:

\[x < 2 \] és \[x > 3 \] , vagy \[x < 2 \] vagy \[x > 3 \]

Az első esetben a megleghalmaz üres halmaz, a második esetben pedig egy végtelen halmaz.

A mondatokon belüli szavak sorrendje is nagyon fontos. A következő két kijelentés egészen mást jelent, pedig ugyanazok a szavak alkotják mindkettőt.

„15-nek van két pozitív osztója.” (igaz)
„15-nek két pozitív osztója van.” (hamis)

Matematikatanításunk egyik fontos célja a pontosságra törekvés. E cél megvalósításához nélkülözhetetlenné válik a matematikai logika fogalmomrendszere.
A halmazelméleti alapok tanításához hasonlóan ez a témakör sem képezi külön tananyag tárgyát. Minden témakörnél – mind a fogalmak kialakításánál, mind a gyakorlásnál, ismétlésnél – előjönnek a matematikai logikai ismeretek rendszere, segítségével az értelmezések, definíciók, tételek pontos megfogalmazását, a félreértések, a helytelen értelmezések elkerülését. LeegYSzerűsítve azt is mondhatnánk, hogy a matematikai logika a matematika nyelve, amelynek helyes művelése sikerhez, helytelen használata kudarchoz vezet a problémák megoldása során.

Előre bocsátjuk, hogy ha a tanár pontatlannal beszélt a matematikaórákon, akkor diákjai is így beszélnek, tehát órái a tanár felelőssége.

A következőkben megvizsgáljuk a logikai ismeretek fogalma rendszerét, felépítjük a „fogalompiramist” és példákat mutatunk arra, hogy megfelelő mintapéldákkal hogyan lehet könnyen elsajátítani a tanulóknak ezeket az ismereteket, és hogyan lehet ezeket alkalmazni a matematikai ismeretsajátításban.

9. A fogalmak, ismeretek rendszere

1. Kijelentés (állítás), igaz, hamis (logikai érték)

Ezek alapfogalmak, nem definiáljuk őket, viszont sok-sok, a tanulókhoz közel álló, érthető feladattal érzékeljük a lényegüket.

2. Ítélet

Az a kijelentés, aminek van logikai értéke. Tehát, mint láttuk a kijelentés, a kijelentő mondat nem azonos az ítélettel. Míg a kijelentésről nem tudjuk valóban határoznia, hogy igaz vagy hamis, addig az ítéletnél ez elengedhetetlen.

Például: „Szép idő van.” Ez kijelentés és nem ítélet, mert az idő szépsége erősen szubjektív. Viszont a „2 páros szám.” Kijelentés ítélet, mert meg tudjuk határoznia a logikai értékét.

3. A harmadik kizárásának elve; az ellentmondás-mentesség elve

Ezt a két nagyon fontos tulajdonságot is megfelelő – nem feltétlen matematikai – példák sokaságával, már az általános iskola alsó tagozatában celszerű megmutatni a tanulóknak. Ahogy bővül a tanulók matematikai ismeretrendszere, más-más példákkal erősítjük ezen ismeretek belsővé válását.

4. Elemi ítélet – összetett ítélet

Elemi ítéletnek nevezzük azt az ítéletet, amelyet nem lehet logikai műveletek alkalmazásával létrehozni.

Például: A 6 páros szám.

Összetett ítéletnek azt az ítéletet nevezzük, amely elemi ítéletekből logikai műveletek alkalmazásával hozható létre.

Például: A 15 osztható 3-nal és 5-nek többszöröse.

A logikai műveletekre is igaz a halmazműveleteknél leírt definíció. Ítéletek Descartes szorzatát képezteek le az ítéletek halmazába. Ítéletekkel végzett műveletek „eredménye” is ítélet lesz.

5. Műveletek

1. Negáció (tagadás)

Egyváltozós logikai művelet. A p ítélet negációjának nevezzük azt az ítéletet – és

\(\neg p \)-vel jelöljük – amely hamis, ha p igaz, és igaz, ha p hamis.

Például: „3 összetett szám.” (hamis);
Rendszerszemlélet a matematika tanításában

„Nem igaz, hogy 3 összetett szám.” (igaz) (Más megfogalmazásban: 3 nem összetett szám.)

Az ítélet kétszeres tagadásának logikai értéke egyenlő az eredeti ítélet logikai értékével.

„3 összetett szám.” (hamis)

„Nem igaz, hogy 3 összetett szám.” (igaz)

„Nem igaz, hogy 3 nem összetett szám.” (hamis)

\(|p| = |\neg (\neg p)|\]

A mintapéldákkal azt kívánjuk hangsúlyozni, hogy a logikai műveleteket sem definícióval közvetítjük a tanulóknak, hanem megfelelő példákkal felfedezetetjük azok tulajdonságait.

A negáció végrehajtásának legegyszerűbb módja, hogy az ítélet elé odairjuk, hogy „nem igaz, hogy…”

A negáció művelettáblája:

<table>
<thead>
<tr>
<th>p</th>
<th>\neg p</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>h</td>
</tr>
<tr>
<td>h</td>
<td>i</td>
</tr>
</tbody>
</table>

A művelettáblát szerencsés minden logikai műveletnél felvázolni, mert ebből inkább nyilvánvalóvá válik, hogy nem az ítélet tartalmi vonatkozása a fontos, hanem annak logikai értéke.

A tagadás halmazelméleti megfelelője a komplementer-képzés. Megfelelő példákkal ez is könnyen megmutatható a tanulóknak. (Első U-nak, de nem eleme A-nak – nem igaz a p tulajdonság.)

1. Konjunkció

A p és q ítélet konjukcióján azt az ítéletet értjük, amely akkor igaz, ha mindkét ítélet igaz.

Kötőszavai: és, de, noha, pedig, továbbá stb.

Jelölése: p \land q.

Minden témakörben a példák széles skáláját találjuk a konjukció bemutatására és ennek alapján tulajdonságainak felfedezetetésére.

Hajlamosak a tanulók arra, hogy az és kötőszót a konjukció műveletével azonosítsák. Ennek kiküszöbölésére az ellenpéldák a legjobbak.

Például: „6-nak és 15-nak a legnagyobb közös osztója 3.” Látható, hogy itt az „és” pusztán felsorolást jelent, hiszen nem beszelhetünk sem 6-nak sem 15-nek a legnagyobb közös osztójáról. (Egy számnak nincs közös osztója.) Itt az „és” akkor jelentene konjukciót, ha azt mondhatnánk, hogy 6-nak is és 15-nek is 3 a legnagyobb közös osztója – ami értelmezhetetlen.

Ilyen példákkal mutathatjuk meg a tanulóknak, hogy az „és” művelet akkor jelent konjukciót, ha helyettesíthető az „… is, … is”, vagy „mindkettő”, vagy „mindegyik” stb. szavakkal.

Például: 15 osztható 3-mal és 5-tel. Itt az „és” már konjukció, hiszen 15 osztható 3-mal is és 15 osztható 5-tel is. (Természetesen hamis ítéletekre is igazak az itt elmondottak.)

A konjukció művelettáblája:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>p \land q</th>
</tr>
</thead>
</table>

Created by XMLmind XSL-FO Converter.
A művelettáblát csak akkor írassuk fel a tanulókkal, amikor már a konjukció lényegét megértették. Tehát ne definícióval és ne a művelettáblával kezdjük a tárgyalást, hanem ez legyen a végső összegzés, a lényegkiemelés.

A konjukció lényegét jobban megértik a tanulók, ha kapcsoljuk a halmazok metszetéhez. (Mindkét halmaznak elemei, mindkét kijelentés igaz.)

1. **Diszjunkció**

A p és q ítéletek diszjunkcióján azt az ítéletet értjük, amely pontosan akkor hamis, ha mindkét ítélet hamis.

Kötőszavai: vagy, legalább (az egyik), valamelyik stb.

A diszjunkció a megengedő vagy. A diszjunkció során kapott ítélet akkor igaz, ha legalább az egyik ítélet igaz.

Például:

Melyek azok a 20-nál kisebb természetes számok, amelyek párosak vagy 5-nek többszörösei?

A diszjunkció művelettáblája:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \lor q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>i</td>
<td>h</td>
<td>i</td>
</tr>
<tr>
<td>h</td>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>h</td>
<td>h</td>
<td>h</td>
</tr>
</tbody>
</table>

Megfelelő példákkal szépen mutatható a halmazok uniójával való kapcsolat.

1. **Kizáró vagy**

Kötőszavai: vagy-vagy; pontosan az egyik stb.

Ha két ítéletet a „kizáró vagy”-gyal kapcsolunk össze, az új ítélet pontosan akkor igaz, ha az egyik igaz, a másik hamis.

A kizáró vagy művelettáblája:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \Delta q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>i</td>
<td>h</td>
</tr>
<tr>
<td>i</td>
<td>h</td>
<td>i</td>
</tr>
<tr>
<td>h</td>
<td>i</td>
<td>i</td>
</tr>
</tbody>
</table>

Created by XMLmind XSL-FO Converter.
Rendszerszemlélet a matematika tanításában

Ez azt jelenti, hogy „vagy fej, vagy írás”, illetve a „fej vagy, írás közül pontosan az egyik” teljesül.

Halmazelméleti megfelelője a szimmetrikus különbség.

1. Összeférhetetlenségi vagy (Sheffer – művelet)

Ha két ítéletet a Sheffer művelettel kapcsolunk össze, akkor az új ítélet akkor lesz igaz, ha a két ítélet közül legfeljebb az egyik igaz.

Az összeférhetetlen vagy művelettáblája:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>p(\lor)q</th>
<th>p (\land) q</th>
<th>(\lor) (p (\land) q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>i</td>
<td>h</td>
<td>i</td>
<td>h</td>
<td>i</td>
</tr>
<tr>
<td>h</td>
<td>i</td>
<td>i</td>
<td>h</td>
<td>i</td>
</tr>
<tr>
<td>h</td>
<td>h</td>
<td>i</td>
<td>i</td>
<td>i</td>
</tr>
</tbody>
</table>

Vegyük észre, hogy p \(\lor\) q ítélet logikai értéke megegyezik a konjukció tagadásának logikai értékével.

A „vagy”-ok használata a tanulókban bizonytalanságot születhet, legalábbis addig, amíg nem értik a háromféle „vagy” közti különbséget. Ezt kiküszöbölendő szerencsés, minden esetben a legalább, legfeljebb, pontosan szavakkal is megerősíteni azt, hogy melyik műveletre gondoltunk.

A következő feladat jó példa erre a megkülönböztetésre:

A 20-nál kisebb természetes számonk közül válasszuk ki azokat, amelyek 2 és 3 közül legalább az egyikkel, pontosan az egyikkel, illetve legfeljebb az egyikkel oszthatóak. Ezáltal a halmazműveletekkel való kapcsolat is nyilvánvalóvá válik.

1. Implikáció

Az implikáció két elemi ítéletből, előtagból és utótagból áll. A p előtag és q utótag implikációján azt az ítéletet értjük, amely pontosan akkor hamis, ha az előtag igaz, az utótag hamis.

Kötőszavai: ha, … akkor

Jele: p \(\rightarrow\) q

Az előtag a feltétel, az utótag a következmény.

Az implikáció művelettáblája:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>p (\rightarrow) q</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>i</td>
<td>h</td>
<td>h</td>
</tr>
<tr>
<td>h</td>
<td>i</td>
<td>i</td>
</tr>
</tbody>
</table>
Megfelelő példákkal megmutathatjuk, hogy a \(p \rightarrow q \) logikai értéke megegyezik \((p \land \neg q) \) ítélet logikai értékével.

(A Hajdu-féle középiskolai tankönyvcsaládban a példák széles tárházát találjuk minden témakörnél.)

1. Ekvivalencia

Kötőszavai: akkor és csakis akkor; pontosan akkor, ha … ekvivalens … - vel.

A p és q ítéletek ekvivalenciáján azt az ítéletet értjük, amely pontosan akkor igaz, ha a két komponens logikai értéke megegyezik.

Jelölése: \(p \leftrightarrow q \); \(p = q \)

Az ekvivalencia művelettáblája:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>(p \leftrightarrow q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>i</td>
<td>h</td>
<td>h</td>
</tr>
<tr>
<td>h</td>
<td>i</td>
<td>h</td>
</tr>
<tr>
<td>h</td>
<td>h</td>
<td>i</td>
</tr>
</tbody>
</table>

Példa erre, a 9-cel való oszthatóság és a számjegyek összegének oszthatósága. Mind az implikáció, mind az ekvivalencia a tételek értelmezésében és bizonyításában fontos szerepet játszik, ezért a tárgyalásukat hangsúlyosan kell kezelnünk.

A tanulók jellemző típushibája, hogy a feltételt gyakran keverik a következménnyel. Ezt a hibát csak megfelelő példák és ellenpéldák sokaságával küszöbölhetjük ki.

(A tételek szerkezetével, a feltételek szükséges és elégséges voltával, az ekvivalens tételekkel az egyes anyag részeknél külön foglalkozunk.)

6. Kvantorok

Univerzális kvantor: minden, bármely stb.

Egzsistenciális kvantor: van olyan, létezik stb.

Mindkét kvantor nagyon gyakran előfordul a matematikában, és megfelelő példákkal jól kiemelhető a lényegük.

 Példaival, ha felveszünk egy tetszőleges számhalmazt, erre a következő ítéleteket mondhatjuk:

„Minden szám páros.” Ha egyetlen olyan számot is találunk, ami nem páros, vagy nem egész, akkor ez az ítélet hamis, egyébként igaz.

„Van olyan szám, ami páros.” Ha legalább egy ilyen számot találunk az ítélet igaz, ha nem, akkor hamis.

Jól fejleszthető a tanulók gondolkodása a kvantorok tagadásával.

Például: Minden paralelogramma trapéz. (igaz)

Tagadása: Nem igaz, hogy minden paralelogramma trapéz. (hamis)
Rendszerszemlélet a matematika tanításában

Más megfogalmazással: Nem minden paralelogramma trapéz, vagy van olyan paralelogramma, ami nem trapéz.

Tehát a minden tagadása: nem igaz, hogy minden; nem minden; van olyan, ami nem.

Hasonlók mondhatók el, a van olyan kvantorról.

A van olyan tagadása: nem igaz, hogy van olyan, nincs olyan, mindegyik nem, egyetlen sem, stb.

Természetesen ezeket a nehéz gondolati absztrakciókat is sok-sok konkrét példával kell érthetővé tenni a tanulók számára.

Összegezve: mind a halmazelmélet alapja, mind a matematikai logika elemei nélkülözhetetlenek a matematika korrekt tanításához. Fontos, hogy az alapismereteket ne definíciók formájában közvetítsük a tanulók számára, hanem megfelelő mintapéldák elemzésével fedeztessük fel azokat.

Kulcsszavak
halmazelméleti alapfogalmak, axiómák
halmazműveletek
műveleti tulajdonságok
a matematikai logika alapfogalmai, axiómája
logikai műveletek
műveleti tulajdonságok
capsolatok a műveletcsoportok között
tagadás

10. Kérdések, feladatok:

1. Gyűjtsön a Hajdu-féle általános iskolai és középiskolai tankönyvcsalád minden témakörében olyan feladatokat, amelyekkel a halmazműveleteket be lehet mutatni!

2. Keressen kijelentéseket, ítéleteket a Hajdu-féle tankönyvcsaládból és végezze el velük a logikai műveleteket!

11. Kötelező irodalom:

1. Dr. Czeglédy István: Matematika tantárgypedagógia I-II. főiskolai jegyzet
 Bessenyei Kiadó Nyíregyháza, 2004

2. Dr. Hajdu Sándor szerkesztésében: Matematika 9-12. tankönyvek
 Műszaki Könyvkiadó, Budapest, 2007-2010

3. Dr. Hajdu Sándor szerkesztésében: Matematika 9-10. Gondolkodni jó!
 Műszaki Könyvkiadó, Budapest, 2009-2010

II. A számfogalom felépítése
 (A természetes számoktól a komplex számokig.)
A szám a legfontosabb fogalmaink egyike. Számfogalom nélkül nemcsak matematikai tevékenység nem képzelhető el, hanem társadalmi tevékenység sem. Ezen túl a számfogalom ismeretrendszere felfűzhető az összes matematikai témakör.

A számfogalom eszközének szerepel az összes többi fogalom tanulásában, tanításában. Ha ezekkel az ismeretekkel nem rendelkeznek megfelelő szinten tanulóink, akkor a matematikatanításunk teljesen eredménytelen lesz.

A számfogalom ismeretrendszere többféleképpen is kialakítható. Az egyik ilyen bevezetési mód a Peano-féle axiómarendszer alapján történő felépítés.

1. A 0 természetes szám.
2. Minden n ∈ N-re van n-re rákövetkező n’. (n’ ∈ N).
3. Nincs olyan n ∈ N, amelyre n’ = 0.

(A rákövetkező nem lehet kezdőelem.)

1. Ha n’ = m’ akkor n = m.
2. Ha a 0 természetes számnak (kezdőelemnek) megvan egy T tulajdonsága, és valahányszor az n természetes számnak megvan ez a T tulajdonsága, mindannyiszor az n’-nek is megvan a T tulajdonsága, akkor minden természetes számnak megvan a T tulajdonsága.

Ezzel az axiómarendszerekkel nagyon körülményes lenne az általános iskolában, annak is az alsó tagozatában kialakítani a számfogalom ismeretrendszerét, mert túlságosan elvont, nem tudnánk egyszerű, konkrét példákkal megmutatni a lényegét.

Az iskolai oktatásban a számfogalom kialakítását a halmazelmélet alapján vezetjük vissza. A halmazelmélet axiómáját már korábban tisztázottuk. A számosság és az ekvivalencia segítségével, pedig értelmezhetjük a műveleteket.

Természetesen a tanulóknak minden esetben konkrét példákon mutatjuk be az itt felsorolt műveleteket, tulajdonságokat.

A számfogalom kialakítását az általános iskola 1. osztályában kezdjük, de még az érettségi után sem fejezzük be. Ahogy bővül a tanuló matematikai ismerete, úgy mélyül a számfogalommal kapcsolatos ismereteinek rendszere is.

12. A számfogalom ismeretrendszere

1. A természetes számok a véges halmazok számosságai

\[A = \{ a, b, c, d \}; \quad |A| = 4; \quad (|A| jelöli az A halmaz számosságát.) \]

\[
\begin{align*}
1. \quad a + b & = \mathbf{A} \cup \mathbf{B} \\
A \cap B & = \emptyset \\
2. \quad a \cdot b & = \mathbf{A} \times \mathbf{B} \\
3. \quad a^b & = \mathbf{A}^\mathbf{B} \\
A \neq \emptyset ; B \neq \emptyset ; A \neq \emptyset ; B \neq \emptyset
\end{align*}
\]
4. Az üres halmaz számossága 0.

3. Műveleti tulajdonságok

Mindezek szépen szemléltethetők konkrét számhalmazokkal, akár már 6-10 éves korban is.

Nem definícióként, hanem színtén konkrét példákkal mutatjuk meg a műveleti tulajdonságokat.

1. \(a + b = b + a; \ a \cdot b = b \cdot a; \) kommutativitás

2. \((a + b) + c = a + (b + c); \ (a \cdot b) \cdot c = a \cdot (b \cdot c); \) asszociativitás

3. \((a + b) \cdot c = a \cdot c + b \cdot c; \) disztributivitás

Az elnevezések megtanulását sem kell erőltetnünk kezdetben. Elég konkrét példákkal megmutatni és alkalmazni ezeket a műveleti tulajdonságokat és a felső tagozatban, illetve a középiskolában elég megadni a pontos definíciót.

4. Egységelem, zéruselem

Az egységelem és a zéruselem fogalma is szépen bevezethető ezzel a felépítési móddal:

1. \(a + 0 = a; \) A 0 az összeadásra nézve egységelem.

2. \(a \cdot 1 = a; \) Az 1 a szorzásra nézve egységelem.

3. \(a \cdot 0 = 0; \) A 0 a szorzásra nézve zéruselem.

A klasszikus \(a > e = e \cdot a = a , \) illetve az \(a > z = z \cdot a = z \) definíciókat még a középiskola felsőbb osztályaiiban sem érténék meg a tanulók. De például az:

\[5 + 0 = 5 ; \ 7 \cdot 1 = 7 ; \ 2 \cdot 0 = 0 \]

már első osztályban tanítandó műveletek pontosan kifejezik az egységelem és a zéruselem lényegét. Ezeket a fogalmakat így is taníthatjuk, még az elnevezések megtanításától is eltekinthetünk.

5. Hatványok

A hatványozásra vonatkozó összefüggések a szorzásra vezethetők vissza:

1. \(a^k \cdot a^b = (a \cdot b)^k \quad (k = K , \ k \in N) \)

2. \(a^k \cdot b^l = a^{k+1} \quad (l = L , \ l \in N) \)

3. \((a^k)^l = a^{k \cdot l} \)
4. **Definíció szerint:**

$$a^0 = 1, \quad 0^m = 0,$$

ha

$$a \neq 0, \quad m \neq 0.$$

$$a^1 = a, \quad 1^m = 1$$

6. **Műveletek közti összefüggések**

A következő tételek, természetesen bizonyítás nélkül, szintén konkrét számpéldákkal mutathatók meg.

Nevezetesen: $5 = 5$; ha $5 + a = 5 + b$, akkor $a = b$

(Itt a és b helyett tetszőleges természetes számokat írhatunk be, aminek következtében vagy igaz, vagy hamis kijelentést kapunk.)

1. $a + b = c + b \iff a = c$
2. $a \cdot b = c \cdot b \iff a = c ; \quad b \neq 0$
3. $a + b = 0 \iff a = 0 \land b = 0$
4. $a \cdot b = 0 \iff a = 0 \lor b = 0$
5. $a \leq b \iff a + c \leq b + c$
6. $a \leq b \iff a \cdot c \leq b \cdot c$
7. $a \leq b \land c \leq d \iff a + c \leq b + d$
8. $a \leq b \land c \leq d \iff a \cdot c \leq b \cdot d$

Hangsúlyozzuk, hogy az eddig tárgyalt műveletek, műveleti tulajdonságok és a műveletekre vonatkozó tételek a természetes számok halmazára vonatkoznak.

Ez a halmazelméletre épülő axiomatikus felépítés lehetővé teszi, hogy a mindennapok matematikáját, a gyakorlatban történő alkalmazást is megtanítsuk a tanulóknak.

Nézzük ezek tételes felsorolását:

1. elemi alapműveletek különböző számkörökben (szorzótábla, bennfoglaló tábla),
2. helyiérték-táblázat,
3. alaki érték, helyi érték, valódi érték,
4. számegyenes,
5. szóbeli összeadás, kivonás algoritmusta,
6. írásbeli összeadás, kivonás algoritmusta,
7. összeg, különbség változásai, természetes számok szorzása (egyjegyűvel, többjegyűvel) írásban, következtetések egyről többre,
8. a szorzat változásai,
9. természetes számok osztása (egyjegyűvel, többjegyűvel) írásban, következtetések többről az egyre,
10. a maradékos osztás,
11. szorzás, osztás 10 hatványaival,
12. kerekítés, becslés.

Mindezen ismeretek – azon túl, hogy a gyakorlati alkalmazáshoz nélkülözhetetlenek – alapjai, eszközei a matematikai tevékenységnek, és ezekre épül a többi fogalomrendszer.

Már a természetes számok tanítása során rádöbbenthetjük tanulóinkat arra, hogy vannak olyan problémák, amelyek megoldásához kevés a természetes számok halmaza. Először csak kimondatlanul, de később – a középiskolában – már hangsúlyozottan alkalmazzuk a permanencia elvét.

Ez az elv nélkülözhetetlen a számfogalom bővítéséhez, mert a tanulók ismereteinek hiánya miatt sok újonnan bevezetett ismeretet, tételt, nem tudunk igazolni az adott korosztálynál, csak jóval később.

7. Az egész számok

Az egész számok azok a számok, amelyek felírhatók két természetes szám különbségeként. Ennek a fogalomnak a bevezetését az teszi szükségessé, hogy a kivonás művelete nem művelet a természetes számok halmazán, mert két természetes szám különbsége lehet nem természetes szám is.

A kivonás az összeadás inverz művelete, ami nem idempotens, nem kommutatív, és nem asszociatív. (Természetesen ezeket is konkrét példákon mutatjuk meg, és nem definicióval.)

Tisztázzuk az elnevezéseket is: kisebbítendő, kivonandó, különbség.

A kivonás műveletének értelmezése után mutathatjuk meg az egész számok definíciójának lényegét.

Például:

\[-2 = (0 ; 2) = (1 ; 3) = (2 ; 4) = (3 ; 5) = \ldots\]

Azaz a természetes számok olyan rendezett elempárjai halmazának reprezentánsa a \((-2\)), amelyekre igaz, hogy az első elem 2-vel kisebb a másodiknál.

Miután ezt konkrét példákkal megmutattuk a tanulóknak, előhozhatjuk a természetes számoknál tanult ismereteket, és megmutatjuk, hogy a permanencia-elv alapján azok a tulajdonságok itt is érvényben maradnak. (Néhány eset kivételével. Például: hatványozásnál a kitevő továbbra is természetes szám, az egyenlőtlenség iránya szorzásnál változhat, stb.)

8. Az ellentett fogalma (elem additív inverze)

Az ellentett bevezetésénél a \((-1\)-szeres helyett az additivitást hivjuk segítségül, hiszen ez fejezi ki az ellentett lényegét.

Az a természetes szám inverze a \((-a\)), mert \(a + (-a) = 0\).

Ha az elemmel és inverzével elvégezzük a kérdéses műveletet, akkor a neutrális elemet kapjuk.

Konkrét példákon: 7 ellentettje a \((-7\)), mert \(7 + (-7) = 0\), vagy \((-3\) ellentettje a \((-3\) = \(+3\), mert \((-3\) + \(+3\) = 0.

9. Abszolútérték
Összefüggések: $|a + b| \leq |a| + |b|$; $|a \cdot b| = |a| \cdot |b|$

Mindkét összefüggés bizonyítás nélkül is könnyen közel vihető a tanulókhoz konkrét számpéldákkal.

1. Nagysági relációk

$a, b \in \mathbb{Z}$ elemekre az $a < b$, $a = b$, $a > b$ közül pontosan az egyik igaz.

Továbbá, ha $a < b \Rightarrow a + c < b + c$

$a \cdot c < b \cdot c$, ha $c > 0$

$a \cdot c > b \cdot c$, ha $c < 0$

$a \cdot c = b \cdot c$, ha $c = 0$

Az abszolútérték bevezetése után mutathatjuk meg, hogy két negatív szám közül az a nagyobb, amelyiknek abszolútértéke kisebb. Ez számegyenesen szépen reprezentálható.

Figyeljük meg, hogy amíg a természetes számokat absztrakcióval képeztük, (véges halmazok számossága), addig az egész számokat konstrukcióval. (Ellentett-képzés, inverz művelet, abszolútérték.)

1. Euklideszi osztás az egészek gyűrűjében

Legyenek a, b, q, r egész számok, akkor az a felírható a következő alakban:

$a = b \cdot q + r$, ahol $b \neq 0$; $0 \leq r < |b|$
Az egész számok ismeretrendszereinek ilyen felépítése után jöhet a gyakorlati alkalmazhatóság.

Összeadás, kivonás, szorzás az egészek körében, műveletek helyes sorrendje, műveleti tulajdonságok, számolási praktikák, egyenletek, egyenlőtlenségek, egyműveletes – többműveletes szöveges feladatok, előjel, műveleti jel, algebrai kifejezések. Mint ebből a felsorolásból látszik, az egész számoknak is megvan a maga fogalomrendszere.

1. Racionális számok

Az eddig mondottakhoz hasonlóan, itt sem definícióval kezdjük a fogalom kialakítását, hanem olyan mintapéldával, amellyel megmutatjuk a tanulóknak, hogy vannak olyan problémák, amelyek megoldásához már kevés az eddig ismert százhalmaz. Például szükséges hozzá az osztás művelete. Viszont két egész szám hányadosa már nem mindig egész szám. Szükséges ismét bővíteni az általunk ismert halmazt úgy, hogy az osztás művelete is elvégezhető legyen benne.

A számfogalom ilyen felépítésében szépen látszik a fokozatosság, az egymásraépítettség, azaz a rendszer.

Két egész szám hányadosaként felirható számokat nevezzük racionális számoknak, ha a nevező nem 0.

Az egészhez hasonlóan itt is megmutatjuk, hogy egy tört rendezett egész számpárok halmazának a reprezentánsa.

\[
\frac{1}{3}
\]

Például:

\[
= (1 ; 3) = (2 ; 6) = (3 ; 9) = (−1 ; −3) = (−5 ; −15) = \ldots
\]

(Az egyenlőségjellel az ekvivalenciát jelöljük.)

Valójában elmondhatjuk, hogy minden olyan egész számkóból álló rendezett elempárok az \(\frac{1}{3}\) -ot jelenítik meg, amelyeknek a 2. száma háromszorosa az 1. számnak.

Ebből a megközelítésből az is következik, hogy a racionális számok halmaza – a természetes és az egész számokhoz hasonlóan – megszámlálhatóan végtelen számoságú, hiszen az ezekből képzett Descartes-szorzat számoságával egyezik meg.

1. 0 az osztásban

Két problémával szembesül a tanár és a diák.

a. A 0 racionális szám, ebből következően ugyanazokat a műveleteket el lehetne vele végezni, mint a többi egész számmal.

b. Ha 0-t lehet egy nem 0 számmal osztani, akkor 0-val miért nem lehet egy egész számot osztani.

Az absztrakt megközelítés, amely szerint az \(ax = b\) egyenlet megoldását keressük (ahol \(a, b \in \mathbb{Z}\)), még a jó képességű tanulónak is nehéz. Helyette a konkrét példákon való bemutatást javasoljuk.

\[0 : 5 = 0, \text{ mert } 0 \cdot 5 = 0\] Ez belátható, igaz.
5 : 0 = k, mert k ∙ 0 = 5 Ez ellentmondás, mert ha egy szorzat valamelyik tényezője 0, akkor a szorzat is 0.

Tehát nincs olyan k egész szám, ami megfelel a feltételnek.

0 : 0 = k, mert 0 = k ∙ 0 Ez szintén igaz, sőt bármilyen k egész számra teljesül. Tehát végtsen sok k egész szám kielégíti a 0 ∙ k = 0 egyenletet. Azaz a 0 : 0 hányados nem lenne egyértelműen meghatározott.

Ilyen példák után már egyértelműen kimondhatjuk, hogy a 0-val való osztást nem értelmezzük.

14. Reciprok (inverz elem)

A szorzás művelete inverzének bevezetése után akáthatjuk ki az inverz elem (a szorzásra nézve) fogalmát.

Az a ≠ 0 racionális szám inverze a szorzásra nézve az a racionális szám, amire a ∙ a’ = 1 teljesül.

Ez a definíció azért is helytálló, mert kifejezi a reciprok fogalmának lényegét.

Ha egy racionális számot megszorzunk az inverzével (reciprokával), akkor a szorzás egységelemét (1-et) kapjuk eredményül.

(A „fordított érték” elnevezés használatát ezért sem javasoljuk.)

Meg kell mutatnunk, hogy nemcsak törtek, és nemcsak pozitív számoknak van reciproka.

\[
\[\frac{1}{6}\] \quad \text{Például: 6 reciproká} \quad \frac{1}{6} = 1
\]

\[
\left[-\frac{1}{3}\right] \quad \text{3 reciproká} \quad \left(-\frac{1}{3}\right) = 1 \text{ stb.}\]

Visszacsatoljuk a 0-val való osztás kizárására is. 0-nak nincs reciproka, mert az \[\frac{1}{0}\] hányadost nem értelmezzük.

Az ellentett, az abszolútérték, a műveletei tulajdonságok tárgyalásánál is érvényesül a permanencia-elv. Az egészeknél tanult módon tárgyaljuk.

15. Számegyenes

Konkrét példákon keresztül mutatjuk meg, hogy a racionális számok tetszőleges sűrűn helyezkednek el a számegyenesen. Ezt később – a valós számok halmazának tanításánál – kiegészítjük azzal, hogy ennek ellenére nem töltik ki folytonosan a számegyenes.
Ennek bemutatására legegyszerűbb eljárás az, hogy bármely két racionális szám között van, az előző kettőtől különböző, racionális szám. Ebből az is adódik, hogy bármely két racionális szám között megszámlálhatóan végtegen sok racionális szám van a számegyenesen.

Például: $a < b$ és $a, b \in \mathbb{Q}$

Ekkor $a < \frac{a + b}{2} < b$ teljesül, tehát bármely két különböző racionális szám között helyezkedik el a számtani közepük, ami szintén racionális szám.

16. Műveletek

Két racionális szám összege, különbsége, szorzata, hányadosa (az osztó nem 0) szintén racionális szám.

Konkrét példákon keresztül szemléljük ezeket a műveleteket. (Hiszen az absztrakta tárgyalásmód érthetetlen még egy középiskolás tanulónak is, ráadásul az algebrai kifejezésekkel is tisztában kell lenniük.

17. Hatványok

A racionális számok ismerete előtt nem tudjuk a negatív egész kitevőjű hatványokat értelmezni.

Definíció szerint (érvényes a permanencia-elv).

<table>
<thead>
<tr>
<th>a</th>
<th>c</th>
<th>$ad + bc$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{a}{b}$</td>
<td>$\frac{c}{d}$</td>
<td>$\frac{bd}{ad}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>c</th>
<th>$ad - bc$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{a}{b}$</td>
<td>$\frac{c}{d}$</td>
<td>$\frac{bd}{ad}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>c</th>
<th>$a \cdot c$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{a}{b}$</td>
<td>$\frac{c}{d}$</td>
<td>$\frac{b \cdot d}{a \cdot c}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>c</th>
<th>d</th>
<th>$a \cdot d$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{a}{b}$</td>
<td>$\frac{c}{d}$</td>
<td>$\frac{b \cdot c}{b \cdot d}$</td>
<td></td>
</tr>
</tbody>
</table>
Rendszerszemlélet a matematika tanításában

\[a^n = \left(\frac{1}{a} \right)^n = \frac{1}{a^n}, \quad \text{ahol} \quad a \neq 0, \quad n \in \mathbb{N} \quad (1.6) \]

Ezen értelmezés után alkalmazzuk az egészeknél tanult hatványozásra vonatkozó ismereteket.

A racionális számok rendszerű felépítése után megmutatjuk, hogy a közoktatásban (5. osztálytól 12. osztályig) hogyan tudjuk kialakítani a racionális számok ismeretrendszerét:

1. Törtek fogalma, kétféle értelmezése
 (Az egység valamekkora része, a törzstörtek (1 számlálójú törtek) többszöröse.)

1. Törtek összehasonlítása
 (Azonos nevező, azonos számláló, mindkettő különböző, 1-nél nagyobb, 1-nél kisebb, 1-gyel egyenlő törtek, számegyenes.)

1. Egyszerűsítés, bővítés
 (Törtek összehasonlítása, összeadás, kivonás; a hányados változásai.)

1. Törtek összeadása, kivonása
 (Azonos nevezőjű, különböző nevezőjű.)

1. Törtek ellentettje, abszolútértéke

2. Törtek szorzása, osztása természetes számmal
 (Visszavezetjük az összeadásra, a részekre osztás.)

1. Szorzás, osztás törttel
 (Törtrész, egész rész, kiszámítása, századrész, százalék.)

1. Törtek tizedes tört alakja
 (Tört, mint osztás, mint hányados, mint arány, mint racionális szám, arányos osztás.)

1. Tizedestörtek egyszerűsítése, bővítése

2. Tizedestörtek ellentettje

3. Tizedestörtek szorzása, osztása 10 hatvanyáival

4. Műveletek tizedestörtekkel

5. Véges, végtelen szakaszos tizedestörtek

6. Racionális számok ismeretrendszer

A Hajdu-féle általános iskolai és középiskolai tankönyvekben szépen nyomon követhető a racionális számok felépítésének ez a rendszere.

18. Valós számok

A számfogalom fejlesztésénél ismét eljutottunk egy olyan problémához, amikor az ismert számhalmaz már kevés a megoldáshoz. Bővítenünk kell a racionális számok halmazát úgy, hogy fontos matematikai problémák
megoldhatók legyenek. (Másodfokú egyenletek, exponenciális egyenletek, logaritmikus egyenletek, számolási eljárások stb.)

A racionális számok halmazát bővitenünk kell az irrationális számok halmazával. Így kapjuk a valós számok halmazát. (A racionális és az irrationális számok halmazának úniója.)

Azokat a valós számokat nevezzük irrationális számoknak, amelyek nem írhatók fel két egész szám hányadosaként. Az irrationális számok klasszikus bevezetése a , irracionalitásának megmutatásával történik. Ehhez szükséges, hogy az indirekt bizonyítás elvét megtanítsuk a tanulóknak.

19. A racionális kitevőjű hatványok

A permanencia-elvet követve általánosítjuk a hatvány fogalmát. A gyökérvonás és a hatványozás közötti összefüggést felhasználva tehetjük ezt meg.

A-val indítsunk, és innen jutunk el az -n keresztül az összefüggésekig.

(A Hajdu-féle középiskolai tankönyvcsaládban jól nyomon követhető a hatványfogalom kiterjesztése.)

Megmutatjuk, hogy hogyan építhető fel a gyökérvonás a hatványozás fogalomrendszerenként segítségével.

Definíció: Egy nemnegatív valós szám négyzetgyöke az a nemnegatív valós szám, amelynek a négyzete a.

Vizsgáljuk meg, hogy milyen hatvánnyal egyenértékű a négyzetgyök.

Ha a > 0 és a ≠ 1, akkor

1 = 2x
\[x = \frac{1}{2} \]

Ez egyben azt jelenti, hogy egy nemnegatív valós szám négyzetgyöke egyenlő a szám \(\frac{1}{2} \)-ik hatványával.

\[\sqrt{a} = a^{\frac{1}{2}}, \quad a > 0 \] \hspace{1cm} (1.11)

Ugyanezt megtehetjük az n-edik gyöknél is.

\[(\sqrt[n]{a})^n = (a^{\frac{1}{n}})^n, \quad a > 0, \quad a \neq 1 \] \hspace{1cm} (1.12)

\[a^{\frac{1}{n}} = a^{\frac{1}{n}} \] \hspace{1cm} (1.13)

\[x = \frac{1}{n} \] \hspace{1cm} (1.14)

Ebből adódik, hogy

\[n\sqrt{a} = a^{\frac{1}{n}}. \]

(Az \(a = 0 \) és \(a = 1 \) esetén is teljesülnek az előzőekben levezetett eredmények.)

Ezen bevezetés után minden gyökötre vonatkozó azonosság, összefüggés visszavezethető a hatványozás azonosságaira. Érvényesül a permanencia-elv.

20. A valós számok számossága

A valós számok halmazának számossága nem megszámlálhatóan végzélen.

Ezt mindenképpen meg kell mutatnunk, és ráadásul nagyon szemléletes a bizonyítása.

A nyílt intervallumnak a számegyenesen éppen annyi pontja van, mint az egész számegyenesnek.
Visszacsatolunk a racionális számok számegyenesen való ábrázolásához. Megmutatjuk, hogy bármely két racionális szám között megszámlálhatatlanul végzetlen sok irracionalis szám található a számegyenesen.

Ezekre az ismeretekre fűzhetjük fel a másodfokú egyenletek, egyenletrendszereket, egyenlőtlenségek, egyenlőtlenségrendszereket, az exponenciális és a logaritmikus kifejezések értelmezését, illetve az ilyen egyenletek, egyenlőtlenségek megoldását is.

A tanulók nehezen fogadják el azt a tényt, hogy a gyökök értelmezésénél, a gyökökkel való számolásnál a gyök alatti mennyiségre (a hatványalapra) feltételeket kell megfogalmaznunk.

Ennek szükségességére bemutatunk egy példát:

\[
-2 = \sqrt[3]{-8} = (-8)^{\frac{1}{3}} = (-8)^{\frac{2}{6}} = \frac{6}{6} \sqrt{-8^2} = \sqrt{64} = 2
\]

Amennyiben a gyök alatti mennyiségre nem szabunk meg feltételeket, akkor nem is mondhatjuk ki például azt, hogy a hatványozás és a gyökvonás műveletei felcserélhetők, vagy a hatványkitevő tetszőlegesen bővíthető.

Az ilyen meghökkentő példákon keresztül tudjuk tanítványainkat pontosságra nevelni.

21. Komplex számok
A komplex számok fogalmát nem tanítjuk a középiskolában, de mégis célszerű néhány ismeretet megemlíteni róló. (Ennek a jegyzetnek nem képezi tárgyát a komplex számok fogalomrendszerének felépítése.)

Egészen addig nem érti a tanuló, hogy miért mondjuk, hogy a „másodfokú egyenletnek nincs megoldása a valós számok körében”, amíg másfajta számot nem ismer, vagy nem szerez vele kapcsolatos ismereteket.

Valójában nem a másodfokú egyenlet kapcsán konstruálták a komplex számokat, de mi középiskolában ennek segítségével mutatjuk be.

Ennek az az egyszerű magyarázata, hogy a másodfokú egyenletek megoldása során gyakran találkoznak a tanulók olyan másodfokú egyenleettel, amelynek a diszkriminánssa negatív.

\[
\sqrt{-25} = \sqrt{(-1) \cdot 25} = \sqrt{(-1) \cdot 25} = 5 \sqrt{-1} = 5i
\]

Például a \(-25\)-tel nem tudunk mit kezdeni. Ekkor hívjuk segítségül ismét a számkörbővítést úgy, hogy a permanencia-elv itt is érvényesüljön.

\[
\sqrt{-1} = i
\]

A értelmezést, jelölést bevezetve kaphatjuk a komplex számokat. Ennek alapján már értelmet nyer a\[
\sqrt{-25}
\]is.

Ebből általánosítással nyerhetjük a komplex számok általános algebrai alakját:

\[
z = a + bi
\]
Kiféjezettan kiegészítő anyagként megmutatjuk, hogy minden valós szám egyben komplex szám is.

\[\sqrt{2} = \sqrt{2 + 0i} \]

Például:

Kapcsolatba hozzuk a síkbeli vektorokkal, illetve azoknak koordinátarendszerben történő ábrázolásával, abszolútértékével, a műveletekkel és azok tulajdonságaiaval. A trigonometrikus felírások, illetve az ezzel végzett műveletektől már eltekintünk. Ez az érintőleges feldolgozás is elől ahhoz, hogy a valós számok fogalmát jobban megértsek a tanulók – éppen a komplex számok tulajdonságainak bemutatásával.

A számfogalom ily módon történő felépítése lehetővé teszi, mint korábban mondottuk, hogy a matematika legtöbb témakörét felfúzzuk erre a rendszerre, és az egymásra-építettség, fokozatosság elveit betartva érhetőbbé, jobban elfoghatóvá tegyük a matematikát.

Kulcsszavak
természetes számok
egész számok
racionalis számok
valós számok
műveletek, műveleti tulajdonságok
egységelem, zéruselem, inverzelem
axiómarendszer
permanencia-elv

13. Kérdések, feladatok:

1) A halmazelméleti axiómákra építve alakítsa ki az egész számok fogalmát!

2) Ismertesse a hatványfogalom kialakításának módját a pozitív egész kitevőjű hatványoktól a valós kitevőjű hatványig!

14. Kötelező irodalom:

1. Dr. Czeglédy István: Matematika tantárgypedagógia I-II. főiskolai jegyzet
Bessenyei Kiadó Nyíregyháza, 2004

2. Dr. Hajdu Sándor szerkesztésében: Matematika 9-12. tankönyvek
Műszaki Könyvkiadó, Budapest, 2007-2010

3. Dr. Szendrei János: Algebra és számlmélet
Tankönyvkiadó, Budapest, 1974

III. Számlmélet, oszthatóság, számrendszerek

A számlmélet a matematika egyik legrégégebbi ága. Már az ókori matematikusok is komoly számlméleti problémákat oldottak meg. Például Eratószthenész a „szitájával” a prímszámok kiválasztására adott modellt. A számlmélet már kezdetektől a matematika „húzó” ágazata lett, amely a többi terület fejlesztését, fejlődését is
Erdős Pál – a matematika utazó magyar nagyköve – egy előadásában a következőket mondta:

„A számelmélet azért is érdekes fejezete a matematikának, mert olyan problémákat fogalmaz meg, amit egy csecsemő is képes megérteni, de még a legnagyobb matematikus sem tud megoldani.”

Némi túlzás van ebben a kijelentésben, de ha belegondolunk abba, hogy a számfogalom kialakítása kezdetén – alsó tagozatban – már maradékosztályokról, oszthatósági szabályokról beszélünk és egyszerű tételeket is kimondunk, illetve ezeket konkrét példákon igazoljuk, akkor látható, hogy sok igazság van Erdős Pál megállapításában.

Talán ezért is kap nagy szerepet a számelmélet, oszthatóság tanítása a közoktatásban, mert viszonylag hamar bevezethetők a fogalmak, ismeretek, jól hasznosíthatók egyéb témakörök tanításánál és öríási a gondolkodásfejlesztő szerepe.

A többi fejezethez hasonlóan felvázoljuk a számelmélet fogalomrendszerét, megmutatjuk az egymásra-építettséget, a fokozatosságot, felhívjuk a figyelmet a hibalehetőségekre, és példát adunk néhány didaktikai eljárásra.

Rögtön az elején kijelentjük, hogy ennél a témakörnél is érvényesül a „spiralitás” elve. A matematikát nem lehet lineáris felépítéssel tanítani. Az alsó tagozatra jellemző az erősen szemlélethez, tárgyi tevékenységhez kötött előkészítés, a felső tagozatra a konkrét számokkal bizonyítható összefüggések tárgyalása, míg a középiskolára, amikor már a bizonyítások fajtáit és végrehajtását is ismerik a tanulók, a tételek általánosítása és egzakt bizonyítása. Tehát ugyanazt a témakört más-más korosztálynál, más-más szinten ismét tárgyaljuk, annak függvényében, hogy a tanulónk matematikai ismeretei milyen fejlettséget mutatnak.

Például: a prímszámkot, a legnagyobb közös osztókat, az osztási maradékokat stb. mindhárom korábban említett korosztályánál tanítjuk, természetesen az adott korosztály képzettségének megfelelő szinten.

15. A számelmélet fogalomrendszere

A fogalomrendszert – a közoktatás követelményeihhez igazodva – a természetes számokra építjük fel. Némi módosítással természetesen az egész számokra is alkalmazhatjuk ezeket az ismereteket.

1. Euklideszi osztás

A számfogalom kialakításánál – az egész számok gyűrűje – találkoztak először egzakt formában az euklideszi (vagy maradékos) osztással a tanulók. (Alsó tagozatban korábban már hallottak a maradékos osztásról a természetes számoknál.)

Az osztó, többszörös fogalmát ebből vezetjük le.

Bármely a, b ∈ N, b ≠ 0 természetes számra igaz, hogy

\[a = b \cdot k + r \]

ahol 0 ≤ r < b és k, r ∈ N

Ezeket konkrét, megfelelő példákkal be is mutatjuk a tanulóknak.

2. Osztó, többszörös

Ha az a = b \cdot k + r -ben az r =0, akkor

\[a = b \cdot k \]

A b osztója a-nak (b | a), ha létezik olyan k ∈ N, hogy a = b \cdot k.

Ekkor a többszöröse b-nek.
Rendszerszemlélet a matematika tanításában

(Ez jól előkészíti – és pontosan kifejezi – azt az értelmezést, hogy az \(a = b \cdot x \) egyenletnek keressük a természetes szám megoldását; \(a, b, x \in \mathbb{N} \))

3. Az osztó, a többszörös, mint reláció

A természetes számok halmazán képzett Descartes-szorzatnak nem üres részhalmaza az osztója reláció. Azaz a természetes számok rendezett számpárainak halmazából választjuk ki azokat a számpárokat, amelyekre igaz, hogy az első szám többszöröse a másik számnak.

Tulajdonságai:
reflexív, mivel \(a \mid a \); azaz minden természetes szám osztója önmagának;
antiszimmetrikus, mert ha \(a \mid b \) és \(b \mid a \), akkor \(a = b \);
tranzitív, mert ha \(a \mid b \) és \(b \mid c \) \(\Rightarrow \) \(a \mid c \)

Természetesen ezeket a tulajdonságokat konkrét példákon keresztül mutatjuk meg a tanulóknak, mint ahogy azt is, hogy a többszöröse relációra ugyanezek a tulajdonságok érvényesek. Ennek a megmutatása azért fontos, hogy lássa a tanuló a matematika különböző témakörei közötti szoros összefüggést. (Ez is a matematika rendszerelméletét hivatott erősíteni.)

A korábbi fejezet, illetve az eddig mondottak egy értelmezésbeli zavart okozhatnak a tanulóinknak. Egyrészt az osztó értelmezése szerint – az osztás műveletére visszavezetve – a 0-nak minden természetes szám osztója, de a 0 csak a 0-nak osztója.

Például:
\[5 \mid 0 \text{, mert létezik olyan természetes szám, hogy } 5 \cdot k = 0 \text{ (} k = 0 \) \]
\[0 \mid 0 \text{, mert létezik olyan } k \text{ természetes szám, hogy } k \cdot 0 = 0 \text{. (Végtnelen sok ilyen szám van.)} \]
\[0 \mid 5 \text{ nem teljesül, mert nincs olyan } k \text{ természetes szám, hogy } k \cdot 0 = 5 \text{ teljesüljön.} \]

Másrészt az osztás (mint művelet) esetén: a 0-val való osztást nem értelmezzük.

\[5 : 0 = k; \text{ nem értelmezhető, mert nem találunk olyan } k-t, \text{ hogy } k \cdot 0 = 5. \]

(Visszavezettük az osztás inverz műveletére, a szorzásra a problémát.)
\[0 : 5 = k; \text{ értelmezhető, mert } k \cdot 5 = 0 \text{ teljesül, ha } k = 0. \]

(Nem keverendő a 0-val való osztás a 0-át nem 0-val való osztással.)
\[0 : 0 = k; \text{ nem egyértelmű, mert végtnelen sok olyan } k \text{ értéket kapunk, amire } k \cdot 0 = 0 \text{ teljesül.} \]

A probléma úgy tisztázható, ha megfelelő mintapéldákkal megmutatjuk az osztója relációt, és az osztás, mint művelet közti különbséget. (Ennek apropóján például: az osztás nem idempotens, nem kommutatív, és nem asszociatív művelet.

Konkrét példán:
\[5 : 5 \neq 5 ; 10 : 5 \neq 5 : 10 ; (12 : 6) : 2 \neq 12 : (6 : 2). \]

Viszont az osztója reláció reflexív, antiszimmetrikus és tranzitív.)

 Tehát itt is hangsúlyozzuk, hogy a relációt a tulajdonságok: reflexivitás, szimmetria és tranzitivitás, míg a műveleteknél: idempotencia, szimmetria, asszociativitás.)

4. Maradékosztályok

Már alsó tagozatban megmutatjuk, hogy a természetes szám milyen maradékot adhat egy másik természetes számmal való osztás során. Később – az algebrai kifejezések tanításakor – általánosan is felirhatjuk ezektől az összefüggéseket.
Például:

2-vel osztva: \(2k \div 2k + 1\); vagy \(2l \div 2l – 1\); (páros szám, páratlan szám)

3-mal osztva: \(3k \div 3k + 1\); \(3k + 2\);

Más felírással: \(3l \div 3l – 1\); \(3l – 2\); (hárommal osztva milyen maradéket kaphatunk)

Szerencsés megmutatni azt is, hogy azok a számok irhatók fel \(3k + 1\) alakban, amelyek \(3l – 2\) alakúak, illetve \(3k + 2\) alakban, amelyek \(3l – 1\) alakúak. (Elképzelhető, hogy a \(3l – 2\) már nem természetes szám, míg a \(3k + 1\) igen. Ezért mindig azt az alakot használjuk, ami a feladat megoldásánál célszerű. (\(k = l – 1\))

Hasonlóan kell megmutatni a többi osztóval kapcsolatos maradékos írásmódot is. Így tudjuk megalapozni a jóval később tanítandó kongruenciákat is.

Itt tisztázzuk azt is, hogy a 0 páros, vagy páratlan szám. (Elvileg ennek nem szabadna problémának lenni, de sok tanuló hozza ezt a bizonytalanságot, vagy téves értelmezést az alsó tagozatból.)

Tisztázzuk: minden \(2 \cdot k\) alakú szám páros szám, ahol \(k \in \mathbb{N}\). (Mivel \(0 = 2 \cdot 0\), így a 0 páros szám.)

5. Ősszeg és szorzat oszthatóságára vonatkozó tételek

Az oszthatósági szabályok igazolásához szükségesek ezek a tételek.

Tétel: Ha egy összeg minden tagja osztható egy számmal, akkor az összeg is osztható ezzel a számmal.

Bizonyítás: Ha \(d \mid a\), akkor \(a = d \cdot k\); ha \(d \mid b\), akkor \(b = d \cdot l\)

Összeadva a két egyenletet: \(a + b = d(k + l)\), ami éppen azt jelenti, hogy \(d\) osztója \((a + b)-nek\) is.

Tétel: Ha egy szorzat valamelyik ténylezője osztható egy számmal, akkor a szorzat is osztható ezzel a számmal.

Bizonyítás: Ha \(d \mid a\), vagy \(d \mid b\) (diszjunkció), akkor \(a = d \cdot k\), vagy \(b = d \cdot l\)

Összeszorozva a két egyenletet: \(a \cdot b = d \cdot k \cdot b\) vagy \(a \cdot b = d \cdot l \cdot a\)

Ez éppen azt jelenti, hogy az \(a \cdot b\)-nek osztója \(a\) \(d\).

Mindkét tétdelnél ellenpéldákkal kell megmutatnunk, hogy a tételek megfordítása nem igaz. Például az \(5 + 3 (= 8)\) összeg osztható 4-gyel, de a tagok nem oszthatók vele.

\(2 \cdot 9 (= 18)\) szorzat osztható 6-tal, de sem a 2, sem a 9 nem osztható 6-tal.

6. Oszthatósági szabályok a 10-es számrendszerben

Ezek tárgyalását már alsó tagozatban megkezdjük és konkrét számok esetében felső tagozatban korrekt bizonyítást adunk az egyes tételekre, amelyek könnyen általánosíthatók.

Az egyes oszthatósági szabályoknál mindig a rendszert kell bemutatnunk és nem külön-külön önálló egységként tanítanunk az egyes oszthatósági szabályokat, bizonyításokkal együtt.

A rendszerszemléletet tükrözi a következő felsorolás:

1. 10-zel, illetve 10 osztóival való oszthatóság,
2. 100-zal, illetve 100 osztóival való oszthatóság,
(Tehát a 10 négyzetével, illetve annak osztóival.)

1. 1000-rel, illetve 1000 osztóival való oszthatóság.

(Tehát 103-nal, illetve annak osztóival.)

És így tovább 10 000-rel, 100 000-rel stb.

Ezeket a tételeket úgy lehet közös ismertetrendszerbe rendezni, hogy feltesszük a kérdést: Mit mutat meg a szám utolsó jegye, utolsó 2 jegye, utolsó 3 jegye stb.?

Ebből a tételcsoportból egyet kiválasztunk, ennek az egzakt bizonyítását általánosan megadjuk. A többi ennek mintájára tárgyalható.

Tétel: Egy tízes számrendszerben felírt szám pontosan akkor osztható 100-zal, illetve

100 osztóival, ha az utolsó két számjegyéből álló szám osztható 100-zal, illetve

100 osztóival.

(Két dologra rögtön felhívjuk a tanulók figyelmét. A tétel megfordítható – ezt fejezi ki a pontosan akkor, ha – illetve nem csak a „hagyományos” 4-gyel, 25-tel, 100-zal való oszthatóságra vonatkozik, hanem a 20-szal, vagy az 50-nel való oszthatóságra is.)

Bizonyítás:

Írjuk fel a vizsgálandó természetes szám általános alakját (kanonikus alak):

\[A = a_n \cdot 10^n + a_{n-1} \cdot 10^{n-1} + a_{n-2} \cdot 10^{n-2} + \ldots + a_3 \cdot 10^3 + a_2 \cdot 10^2 + a_1 \cdot 10^1 + a_0 \]

(1.17)

ahol \(a_i, n \in \mathbb{N} \) és \(a_i \leq 9 \).

(Amennyiben ez a felírás gondot okoz a tanulóknak – éppen az általánosság miatt –, akkortöbb konkrét természetes szám kanonikus alakját írassuk fel velük bevezetésként.)

Vegyük észre, hogy az utolsó két jegy előtt mindegyik tag osztható 102-nel, mert 102 tényezőként van jelen minden tagban. Ha ezek a tagok oszthatók 102-nel, akkor oszthatók ezek osztóival is, illetve ezen tagok összege is osztható 102-nel, illetve ennek osztóival. Ebből viszont egyértelműen következik, hogy ha az utolsó két számjegyből álló szám osztható 100-zal, illetve annak osztóival, akkor az A természetes szám is, ha nem, akkor A sem.

És megfordítva: ha A osztható 100-zal, illetve 100 osztóival, akkor az utolsó két számjegyből álló szám osztható 100-zal, illetve annak osztóival.

(Természetesen megfelelő példák után a tanuló maga felfedezi azt a kézzelfogható tényt, hogy a százzal való oszthatóságnak szükséges és elégséges feltétele az, hogy a szám két utolsó jegye 0 legyen.)

A bizonyításból az is kiderül, hogy az összegre és a szorzatra vonatkozó tételek nélkülözhetetlenek a bizonyításból.

A jobb képességű tanulók hamar rájönnek arra, hogy ilyen oszthatósági szabály bármilyen 10n-re kimondható és igazolható.

Oszthatósági szabályok 10-es számrendszerben 9-cel, 3-mal

Ez az oszthatósággal kapcsolatos rendszereknek egy másik pólusa: 10-nél (az alapszámmal) 1-gyel kisebb számmal (9-cel), illetve ennek osztójával (3-mal) való oszthatóság.

Tétel: Egy tízes számrendszerben felírt szám akkor és csak akkor osztható 9-cel, illetve 9 osztójával (3-mal), ha a számjegyek összege osztható 9-cel, illetve
9 osztójával (3-mal).

(A bizonyítás lépéseit konkrét példákon keresztül szépen lehet szemléltetni. Mi egy olyan általános bizonyítást adunk, amelyet a nem tízes alapú számrendszerek esetén is alkalmazhatunk.)

Bizonyítás:

\[
A = a_n \cdot 10^n + a_{n-1} \cdot 10^{n-1} + \ldots + a_2 \cdot 10^2 + a_1 \cdot 10^1 + a_0
\]

Adjuk hozzá A-hoz a következő összeget:

\[
a_n + a_{n-1} + \ldots + a_2 + a_1 - a_n - a_{n-1} - \ldots - a_2 - a_1
\]

Ezáltal az A értéke nem változott. Rendezés és kiemelés után:

\[
A = a_n(10^n - 1) + a_{n-1}(10^{n-1} - 1) + \ldots + a_2(10^2 - 1) + a_1(10^1 - 1) + a_n + a_{n-1} + \ldots + a_1 + a_0
\]

Mivel \((10^1 - 1), (10^2 - 1), (10^3 - 1)\) stb. mindegyike osztható 9-cel, így ezen tényezőket tartalmazó tagok is, ebből adódóan ezek összege is.

Következésképpen: A pontosan akkor osztható 9-cel (és ennek folyományaként 3-mal), ha az összeg is osztható 9-cel (3-mal). Ez az összeg pedig éppen az A számjegyek összege.

További érdekes oszthatósági szabályokat is megmutathatunk a tanulóinknak. Ilyen például a 7-tel, a 11-gyel és a 13-mal való oszthatóság szabálya. Ezáltal mintegy érzékelhetővé tudjuk tételünk, hogy bármely számra konstruálhatunk oszthatósági szabályt, viszont ezek nem teszik sokkal egyszerűbbé a számolásunkat, így csak érdekként javasoljuk ezek megmutatását.

7. Prímszámok, összetett számok, ikerprímek

A definíálásán túl azért érdemes kiemelten kezelni ezeket a fogalmakat, mert sok olyan tételt tudunk ezáltal tárgyalni, amelyek egyrészt érdekesek, motiváló hatásúak, másrészt a matematika egyéb témaköreinek tanításakor jól hasznosíthatók. Azt is el kell mondaniuk, hogy az 1 nem prímszám, továbbá a 0 nem összetett szám, hiába van végtelen sok osztója.

Itt pontosíthatjuk a triviális és a valódi osztó fogalmát is.

A „Végtegen sok prímszámván” tétel bizonyítása pedig az indirekt bizonyítás elmélyítését segíti elő.

Az ikerprímek olyan prímszámok, amelyek különbsége 2.

8. Prímtényezős felbontás

Többféle eljárást is megmutatunk, és mindegyikkel előkészítjük a szármélet alaptdelét. A prímtényezős felbontással tudjuk a legnagyobb közös osztó és a legkisebb közös többszörös fogalmát bevezetni, továbbá a meghatározásukra a szabályt megfogalmazni.

9. A szármélet alaptdeléte
Fontos tétel, mintegy szintetizálja az eddigi számelméleti ismereteket. Az egzakt bizonyítástól még középiskolában is eltekintünk, mert a hozzá szükséges ismeretanyag meghaladja az e korosztálytól elvárható ismereteket. Csak konkrét összetett számok príménymesős felbontásával érzékelhetjük a bizonyítás lényegét.

Tétel: Minden összetett szám felbontható prímszámok szorzatára, és ez a felbontás a tényezők sorrendjétől eltekintve egyértelmű.

10. Az összes osztók száma

Egy szám összes osztóinak számát többféleképpen is meghatározhatjuk.

Már általános iskolában alkalmazhatjuk az ügynevezett osztópáros megoldást. Ennek a módszernek a lényege, hogy kétényezős szorzat formájában írjuk fel a számot.

Például: 60 = 1 ∙ 60 = 2 ∙ 30 = 3 ∙ 20 = 4 ∙ 15 = 5 ∙ 12 = 6 ∙ 10
64 = 1 ∙ 64 = 2 ∙ 32 = 4 ∙ 16 = 8 ∙ 8

Az ilyen felbontásokból több tapasztalat is leszűrhető:

A másik módszer a príménymesős felbontással való meghatározás.

![60=2^2\cdot3\cdot5,\ 64=2^6](image)

Például:

Itt a kombinatorikus gondolkodás kerül előtérbe. Azt kell megvizsgálnunk, hogy hány egytényezős, kétényezős, háromtényezős stb. szorzat képezhető a primhatványokból.

Gyakori hiba, hogy a tanulók az 1-et, illetve magát a számot kihagyják az osztók közül.

Ez utóbbi eljárásból vezethetjük le az összes osztók számának maghatározására vonatkozó összefüggést. (Természetesen sok konkrét példával mutatjuk meg a szabályt.)

Tétel:

| A = p_1^{n_1} \cdot p_2^{n_2} \cdot p_3^{n_3} \cdots \cdot p_k^{n_k} |
| Az összes osztóinak száma: |
| N(A) = (n_1 + 1) \cdot (n_2 + 1) \cdot (n_3 + 1) \cdot \cdots \cdot (n_k + 1) |

Bizonyítás helyett inkább azt célszerű megmutatni a tanulóknak, hogy hogyan kaptuk ezt az összefüggést.

p1 : 2 (= 1 + 1) osztója van (1 ; p)
p2 : 3 (= 2 + 1) osztója van (1 ; p ; p2)
p2 · q1 : 6 (= (2 + 1) · (1 + 1)) osztója van (1 ; p ; p2 ; q ; p q ; p2 q)
p3 · q2 : (3 + 1) · (2 + 1) = 12 osztója van (1 ; p ; p2 ; p3 ; q ; q2 ; p q ; p2 q ; p3 q ; p q2 ; p2 q2 ; p3 q2)

Innen általánosítunk:

pk · q1 : (k + 1) · (1 + 1) az osztók száma.
1. Tökéletes, bővelkedő, szűkölködő, barátságos számok

A tananyag önálló feldolgozása során a tanuló játsza a számelméleti problémák megoldására lesz képes.

1. Legnagyobb közös osztó, legkisebb közös többszörös

Mind az összes osztó megkeresése, mind a prímteveinézős felbontás által megadott. Készítsük fel a prímteveinézős felbontást, fejlődik a kombinatorikus gondolkodás stb., azaz mélyebb számelméleti problémák megoldására lesz képes.

Két vagy több szám legnagyobb közös osztóján azt a számot értjük, amelyik minden közös osztónak többszöröse.

Két vagy több szám legkisebb közös többszöröse az a szám, amelyik minden közös többszörösnek osztoja.

Egy általános iskolai tanulónak elég nehezen érthetőek ezek a definíciók, így számukra megfelelő konkrét példákkal kell előkészíteni ezt a fogalmat.

Amikor a fogalom kialakításán – a fogalmi jegyek rögzítésén – túl vagyunk, hozhatjuk elő ezen fogalmak meghatározásai módot – a prímteveinézők felhasználásával.

Ezután alakítsuk ki a relatiív prímek fogalmát. Fontos tisztázni, hogy a relatiív prímek nem feltétlen prímek. Két összetett szám is lehet relatiív prim, ha a legnagyobb közös osztójuk 1. Természetesen, két különböző prímszám relatiív prim is egyben.

A legnagyobb közös osztó és a legnagyobb közös többszörös közti összefüggést is kiszámítsuk. Fontos tisztázni, hogy a relatiív prímek nem feltétlen prímek. Két összetett szám is lehet relatiív prim, ha a legnagyobb közös osztójuk 1. Természetesen, két különböző prímszám relatiív prim is egyben.

A legnagyobb közös osztó és a legkisebb közös többszörös közti összefüggést viszont már általános iskolában is bemutatjuk – konkrét példákkal.

(a ; b) ∙ [a ; b] = a ∙ b

Ügyeljünk arra, hogy a 0-nak ne képezzük egyetlen természetes számmal sem a legnagyobb közös osztóját, illetve a legkisebb közös többszöröseit.

1. A legnagyobb közös osztó és a legkisebb közös többszörös képzés, mint művelet

Mindkét esetben két (vagy több) pozitív természetes számhoz az a pozitív természetes számot rendeljünk, ami a legnagyobb közös osztójától, illetve a legkisebb közös többszöröseinél kicsébb.

1) (a ; a) = a [a ; a] = a idempotens

2) (a ; b) = (b ; a) [a ; b] = [b ; a] kommutatív

3) ((a ; b) ; c) = (a ; (b ; c)) [[a ; b] ; c] = [a ; [b ; c]] asszociatív

4) (a ; 1) = 1 , az 1 zéruselem a legnagyobb közös osztó képzésre

5) [a ; 1] = a , az 1 neutrális elem a legkisebb közös többszörös képzésre.

Ezzel a feldolgozásával meg tudjuk valósítani a belső koncentrációt, azaz kapcsolatot tudunk létesíteni a műveletekkel. Nyíltván csak kiegészítő anyagként, és csak a jó képességű tanulóknak ajánljuk a tanítását.

1. Diofantoszi egyenletek

Az ilyen egyenletek értelmezéséből látszik, hogy ez is szorosan kapcsolódik a számelmélethez.
a) Az \(ax = b \) egyenletet, ahol \(a, b, x \in \mathbb{Z} \) egyismeretlenes elsőfokú diofantoszi egyenletnek nevezzük.

Ennek akkor és csakis akkor van megoldása, ha az \(a \mid b \) teljesül. (Vessük össze az „osztója” fogalom bevezetésével.)

b) Az \(ax + by = c \) egyenletet, ahol \(a, b, c, x, y \in \mathbb{Z} \) kétismeretlenes elsőfokú diofantoszi egyenletnek nevezzük.

Ezen egyenlet pontosan akkor oldható meg, ha \((a ; b) \mid c \).

Tehát ki kell emelnünk a fogalom értelmezésénél, hogy az együtthatók egész számok és az alaphalmaz egyenlő az egész számok halmazával.

A diofantoszi egyenleteket próbálkodással, vagy olyan átalakításokkal oldhatjuk meg, ahol a másik feltételt (az egyenlet győztes csak egész számok lehetnek) is felhasználjuk.

Például: \(5x + 3y = 7 \)

Mivel \((5 ; 3) = 1 \), \(1 \mid 7 \), így van megoldása az egyenletnek.

\[
\begin{align*}
\frac{7 - 5x}{3} &= \frac{6 - 6x + 1 + x}{3} = 2 - 2x + \frac{1 + x}{3}.
\end{align*}
\]

Azokat az \(x \)-eket keressük, amelyekre a \(\frac{1 + x}{3} \) is egész lesz.

<table>
<thead>
<tr>
<th>Ehhez alakítsuk át a kifejezést:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{7 - 5x}{3} = \frac{6 - 6x + 1 + x}{3} = 2 - 2x + \frac{1 + x}{3}).</td>
</tr>
</tbody>
</table>

Azokat az \(x \)-eket keressük, amelyekre az \(1 + x 3 \)-nak a többszöröse.

Néhány megoldás: \((−1 ; 4) ; (2 ; −1) ; (5 ; −6) ; … \)

Csak szakkörön, a jó képességű tanulóktól várjuk el az általános megoldást:

Ha az \((x_0 ; y_0) \) kielégíti az egyenletet, akkor az általános megoldás a következő alakban írható:

\[
x = x_0 + \frac{b}{(a, b)} \cdot t, \quad y = y_0 - \frac{a}{(a, b)} \cdot t
\]

(1.22)

Nem tízes alapú számrendszernek
A nem tízes alapú számrendszerek tanításával tehetjük teljessé a számfogalom kialakítását. Megmutathatjuk, hogy bármely természetes szám felirható a következő alakban:

\[A = a_n \cdot g^n + a_{n-1} \cdot g^{n-1} + \ldots + a_3 \cdot g^3 + a_2 \cdot g^2 + a_1 \cdot g + a_0, \]

ahol \(0 \leq a_i < g, \quad a_i \in \mathbb{N}, \quad n \in \mathbb{N}. \)

A számfogalom általánosításával, a racionális számok mintájára, a tizedestörtekhez hasonlóan bevezethetjük a vesszős törteket is.

Például egy „ötödöstört”, és ennek tízes számrendszerbeli alakja:

\[\frac{3421,143}{5} = 3 \cdot 5^3 + 4 \cdot 5^2 + 2 \cdot 5^1 + 1 \cdot 5^0 + 1 \cdot \frac{5^{-1}}{5} + 4 \cdot \frac{5^{-2}}{25} + 3 \cdot \frac{5^{-3}}{125} = \]

\[= 3 \cdot 125 + 4 \cdot 25 + 2 \cdot 5 + 1 + \frac{1}{5} + \frac{4}{25} + \frac{3}{125} = 486,384 \]

16. A számrendszerek fogalomrendszere

1. Természetes számok kanonikus alakja

(Lásd a bevezetőben az A felírását.)

1. Helyiértéktáblázat

1. Alakiérték, helyiérték, valódi érték

A tízes számrendszerben tanultakat kell ezen ismereteknél általánosítani – természetesen konkrét példákkal.

Például: A hatos számrendszer helyiérték-táblázata

<table>
<thead>
<tr>
<th>...</th>
<th>1296</th>
<th>216</th>
<th>36</th>
<th>6</th>
<th>1</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Az 5-ös alakiértékű szám a 6' (= 216) helyiértéken áll, és 5 \(\cdot 216 \) a valódi értéke,

\[\frac{1}{36} \]

a 3-as alakiértékű szám a 6'^2 (= 36) helyiértéken áll, és 3 \(\cdot \frac{1}{36} \) az értéke stb.

(A valódi értéket 10-es számrendszerben adtuk meg.)

1. Az alapszám írásmódja

A 10-es számrendszerben a 10; 1 db 10-es, 0 db 1-es : 10

A 7-es számrendszerben a 7; 1 db 7-es, 0 db 1-es : 10
A 2-es számrendszerben a 2 ; 1 db 2-es , 0 db 1-es : 10

Tetszőleges g alapú számrendszerben a g alapszámot mindig 10 formátumban tudjuk leírni.
(Ez jól szemléltethető a helyiérték-táblázattal.)

1. A különböző alakiértékek száma

A 10-es számrendszerben 10 különböző alakiértékű számjegy van: 0, 1, 2, ..., 9.
Az 5-ös számrendszerben 5 különböző alakiértékű számjegy van: 0, 1, 2, 3, 4.
A 2-es számrendszerben 2 különböző alakiértékű számjegy van: 0, 1.
Tetszőleges g alapú számrendszerben pontosan g különböző alakiértékű számjegy van: 0, 1, 2, ..., g-2, g-1.
(A 0-t a tanulók gyakran kihagyják a számjegyek közül.)

1. A legnagyobb alakiértékű szám

A 10-es számrendszerben 9 a legnagyobb alakiértékű számjegy, a 4-es számrendszerben a 3 stb.
Tetszőleges g alapú számrendszer legnagyobb alakiértékű számjegye g-1, azaz az alapszámnál 1-gyel kisebb szám. (Hiszen, már a g is 10 alakban írható le.)

Ezt azért szükséges tisztázni, hogy a műveleteknél ne írjanak a tanulók az alapszámnál nagyobb számjegyeket az egyes tagokban, tényezőkben.

1. Természetes számok (és vesszős törtek) átírása más számrendszerbe

Az átírás tanításánál alkalmazzuk a csoportosítás módszerét. Egy konkrét példán keresztül mutatjuk be.
Írjuk át az 5728-at 7-es számrendszerbe!

1. A számot osztjuk 7-tel. (Csoportosítsuk a sokaságot 7-esével!)
5728 : 7 = 818

2

Ez 818 db 7-es csoportot jelent és marad 2 db 1-es.

1. A hányadost osztjuk 7-tel. (Csoportosítsuk 7 x 7-esével!)
818 : 7 = 116

6

116 db 7 x 7-es csoportunk lett és maradt 6 db 7-es csoport.

1. Folytatva az eljárást:
116 : 7 = 16 16 : 7 = 116 2 : 7 = 0

4 2 2

A maradékokat helyezzük el a helyiérték-táblázatban:

<table>
<thead>
<tr>
<th>2401</th>
<th>343</th>
<th>49</th>
<th>7</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>
Ezek szerint: 5728 = 224627

(Ügyeljünk a számok kimondására a nem tízes alapú számrendszereknél.)

Visszaírás 10-es számszámrendszerbe a hatványfogalom, helyiérték-táblázat felhasználásával történik.

\[
224627 = 2 \cdot 74 + 2 \cdot 73 + 4 \cdot 72 + 6 \cdot 71 + 2 \cdot 70 = 5728
\]

A vesszős törtek tizedestörté váló, illetve tizedestörtek vesszős törté váló átírása hasonlóan történik. Egy véges tizedestört nem biztos, hogy véges vesszős tört alakú is lesz, és viszont. Véges vesszős tört alakja is lehet végahlen szakszín tizedestört.

(A tízes számszámrendszerhez hasonlóan akkor kapunk véges vesszős törtet egy osztáskor, ha a tört nevezőjében (a tovább már nem egyszerűsíthető alakban) csak az alapszám osztói, vagy az osztók hatványainak szorzata szerepel. Egyébként végahlen szakszínz vesszős törtet kapunk hányadosként.)

1. Művelettáblák

A tízes számszámrendszerhez hasonlóan minden g-alapú számszámrendszernek elkészíthetjük az összeadó- és a szorzótábláját. Ezzel a négy alapművelet elvégzését könnyíthetjük meg.

Példaként nézzük az 5-ös számszámrendszer összeadó- és szorzótábláját!

<table>
<thead>
<tr>
<th>5 +</th>
<th>0 1 2 3 4 5</th>
<th>1 2 3 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 1 2 3 4</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>1</td>
<td>1 2 3 4 10 2</td>
<td>2 4 11 13</td>
</tr>
<tr>
<td>2</td>
<td>2 3 4 10 11 3</td>
<td>3 11 14 22</td>
</tr>
<tr>
<td>3</td>
<td>3 4 10 11 12 4</td>
<td>4 13 22 31</td>
</tr>
<tr>
<td>4</td>
<td>4 10 11 12 13</td>
<td></td>
</tr>
</tbody>
</table>

(A 0 sort és oszlopot nem írtuk le a szorzásnál.)

Ezek segítségével az írásbeli kivonás és az írásbeli osztás is elvégezhető.

1. Oszthatósági szabályok tetszőleges g-alapú számszámrendszerben

Miután a 10-es számszámrendszerben rendszereselélet szerint – és nem külön egységként – kezeltük az egyes tételeket, így itt már csak annak általánosítása a feladatunk.

Megmutatjuk, hogy az alapvető oszthatósági szabályok minden számszámrendszerben azonosak. (Ezen tételek bizonyításától itt eltekintünk, mert az elve teljesen azonos a 10-es számszámrendszerbeli tételek bizonyításával.)

1. Egy g alapú számszámrendszerben felírt természetes szám pontosan akkor osztható g-vel, illetve g osztóival, ha az utolsó számjegye osztható g-vel, illetve g osztóival.

(Mit mutat meg a szám utolsó számjegye?)

Analógia a 10-zel, 2-vel, 5-tel való oszthatósággal.

1. Egy g alapú számszámrendszerben felírt természetes szám pontosan akkor osztható g2-tel, illetve g2 osztóival, ha az utolsó két számjegyből álló szám osztható g2-tel, illetve g2 osztóival.

(Mit mutat meg a szám utolsó 2 számjegye?)

Analógia a 100-zal, 4-gyel, 25-tel, 20-szal, 50-nel való oszthatósággal.

Hasonló tételek a g3-ra, g4-re, … , gn-re.
(Mit mutat meg az utolsó 3, 4, 5, … , n számjegy?)

1. Egy g alapú számrendszerben felírt természetes szám pontosan akkor osztható (g-1)-gyel, illetve (g-1) osztóival, ha számjegyeinek összege osztható(g-1)-gyel, illetve (g-1) osztóival.

(Mit mutat meg a számjegyek összege?)

Analógia a 9-cel, illetve 3-mal való oszthatósággal.

1. Egy g alapú számrendszerben felírt természetes szám pontosan akkor osztható (g + 1)-gyel, ha a számjegyek váltakozó előjellel vett összege osztható (g + 1)-gyel.

Analógia a 11-gyel való oszthatóságra.

Itt is igaz az, amit korábban már említettünk, hogy minden természetes számnal való oszthatóságra találhatunk szabályt, de ezek bonyolultsága nem csökkenti a számolásra fordított energiánkat.

Még két tételt cèlszerû megemlitenünk itt, amit a számítsások során gyakran használunk.

1. Páros alapú számrendszerben felírt természetes szám pontosan akkor páros (azaz osztható 2-vel), ha az utolsó jegye páros.

1. Páratlan alapú számrendszerben felírt természetes szám pontosan akkor páros (azaz osztható 2-vel), ha a páratlan számjegyek száma páros.

Összegezve: a nem tízes alapú számrendszerek tanítása azért fontos, mert azon túl, hogy integrálja a számfogalommal kapcsolatos meglévő tudást, érdekessége miatt nagy motivációs hatással bír.

Kulcsszavak

euklideszi osztás
osztó, többszörös
maradékosztályok
oszthatósági tételek 10-es számrendszerben
prímszámok, összetett számok, prímtényezős felbontás
a szármelmélet alaptétele
az összes osztók száma
bövelkedő, szükőlködő, tőkéletes, barátságos számok
legnagyobb közös osztó, legkisebb közös többszörös
relatív primek, ikerprimek
diofantoszi egyenletek
számok kanonikus alakja, helyiértéktáblázat
alaki érték, helyiérték, valodi érték
számok átírása más számrendszerekbe
művelettáblák

oszthatósági szabályok nem tízes alapú számrendszerekben

17. Kérdések, feladatok:
1. Mutassa meg az analógiát a 10-es és nem 10-es alapú számrendszerben felírt számok oszthatósági szabályai között!

2. Az euklideszi algoritmussal mutassa meg, hogy miért az utolsó el nem tűnő maradék lesz a legnagyobb közös osztó!

3. Milyen összefüggés van a legnagyobb közös osztó, a legkisebb közös többszörös és a két szám szorzata között? Igazolja állítását!

4. Milyen eljárásokat ismer a legnagyobb közös osztó, és a legkisebb közös többszörös meghatározására?

18. Kötelező irodalom:

1. Dr. Hajdu Sándor szerkesztésében: Matematika 9. tankönyv
Műszaki Könyvkiadó, Budapest, 2009

2. Dr. Szendrei János: Algebra és szármelmélet, főiskolai tankönyv
Tankönyvkiadó, Budapest, 1974

19. Ajánlott irodalom:

1. Dr. Czeglédy István: Matematika tantárgypedagógia II. főiskolai jegyzet
Bessenyei Kiadó Nyíregyháza, 2004

IV. A klasszikus algebra elemei

Az algebra olyan tudományág, amely a matematika minden területét átfogja. Nevezetesen: az aritmetika, a halmazelmélet, a matematikai logika, a kombinatorika, a valószínűségszámítás, a számfogalom, a modern (vagy absztrakt) algebra, a vektorok, a vektorterek, a koordinátageometria, vagy az egyéb geometriai területek mindegyikének vagy alapja, vagy eredménye egy-egy algebrai ismeret.

A címben szereplő „klasszikus” szóval azt akarjuk érzékellettetni, hogy a sokrétű, minden területet átfogó tárgyalás helyett ebben a fejezetben csak az algebrai egyenletekkel, és a hozzájuk kapcsolható témakörökkel foglalkozunk. Ezek közül is csak azoknak a területeknek adjuk meg a fogalomrendszerét, amelyek a közoktatásban helyet kaptak (általános- és középiskola).

Éppen az algebra szerteágazó volta miatt szükséges a következő csoportosítás.

Mindennél rendszernek van egy külső és egy belső struktúrája. A külső struktúra az egyes témakörök fogalomrendszerének más témakörök fogalomrendszeréhez való kapcsolódását mutatja, míg a belső struktúra egy adott témakör fogalmainak, ismereteinek felépítését, sorrendjét, kölcsönhatásait tükrözi.

Mindkét struktúrának fontos szerepe van a tantervek tervezésének. Ezek figyelembevételével tudjuk 8 (vagy 12) évfolyamra elosztani úgy a tananyagot, hogy mind a külső, mind a belső rendszerek felépítésében érvényesüljön a rendszerszemlélet.

A klasszikus algebra tanításához szükséges külső strukturális elemei:

1. aritmetikai ismeretek
2. halmaz, elem, eleme
3. relációk, tulajdonságaik
4. számoság
5. számfogalom
6. műveletek, tulajdonságaik
7. egységelem, zéruselem, inverzelem
8. hatványozás
9. számelméleti alapok, osztó, többszörös, primfaktorizáció

Annak igazolására, hogy miért szükséges ennyi külső rendszerbeli ismeret, nézzük a következő példát!

\[3 \cdot x^2 - y^3 \]

Ezt a viszonylag egyszerű algebrai kifejezést csak akkor érthetik meg a tanulók, ha az alábbi fogalmak mindegyikével rendelkeznek:

1. szám
2. betű, változó
3. előjel, műveleti jel
4. együttható
5. összeg, különbség
6. szorzat, hányados
7. hatvány, alap, kitevő

Így már az is érthető, hogy a külső struktúra elemei hogyan épülnek be a belső sruktúrába, továbbá az is, hogy egyes fogalmak, ismeretek több fogalomrendszernek is képezhetik az összetevőit. Ezen felül az is érthető, hogy miért olyan nehéz a tanulók számára az algebrai kifejezések elsajátítása.

Az egyes területek fogalomrendszerei ezen egyszerű, vagy magasabbnédű fogalmakkal kötődnek egymáshoz. Ezáltal tudjuk megvalósítani azt, hogy az egyes ismeretrendszerek egységeit, a felhasználható és szerves egységet alkossanak az általános és középiskolai matematikaoktatásban.

Richard R. Skemp írja A matematikatanulás pszichológiája című könyvében:

„Saját fogalmi rendszert mindenkinek egyedül kell kiépítenie. De a folyamat felgyorsítható, ha a hozzá szükséges anyagok kéznél vannak.”

Az egyenletek, egyenlőtlenségek fogalomrendszere

1. Halmaz, elem, eleme

A kifejezések értelmezési tartományának és értékkészletének meghatározásához szükséges. Felhasználhatjuk a helyettesítési érték meghatározásakor is.

2. Alaphalmaz, részhalmaz, értelmezési tartomány

Az algebrai törteknél, az iracionális algebrai kifejezéseknél, egyenletek, egyenlőtlenségek megoldásánál tölt be fontos szerepet. Az alaphalmaz a betűk helyére írható számok halmaza. Az alaphalmaz azon részhalmaza, amelyre az adott kifejezés értelmezve van az értelmezési tartomány.

3. Változó, együttható

Gyökerei a szorzás értelmezésére nyúlnak vissza. Az együtthatók összegeredetét kell megmutatnunk:

\[2 + 2 + 2 + 2 + 2 = 2 \cdot 5 \]

\[a + a + a = a \cdot 3 \]

formulát írhatjuk, majd alkalmazva a kommutativitást, 3 · a formában írjuk. Akár a · 3-at, akár 3 · a-t írunk, közöljük, hogy a 3 az együttható, (ami megmutatja, hogy az a hányaszor fordul elő összefonádóként az
összegben) és a a változó. Tehát betűt tartalmazó kifejezésnél – és általában csak ott beszélhetünk együthathórról, –, együthatónak mindig konkrét számot tekintünk.

Innen általánosítással jutunk el oda, hogy ha nem „megszámlálhatóak” (a szó gyakorlati értelmében) a tagok, az együtható ekkor is hasonló értelmet kap.

(Például: – 2,8 · x , vagy x · (– 2,8) esetében az összeg alakban történő felírást már nem tudjuk megtenni, elfogadhatjuk – a természetes szám együthatókra vonatkozó analógiával – hogy – 2,8 az együtható, és az x a változó.)

\[\frac{1}{2} a - 3.5b \]

Az algebrai kifejezésben az a együthatója \(\frac{1}{2} \), a b együthatója 3,5.

4. Előjel, műveleti jel

E fogalmak kialakításánál látszólag ellentmondásos a tevékenységünk.

1. Egyrészt megtanítjuk a tanulókat arra, hogy tudjanak különbséget tenni a műveleti jel és az előjel között. Ez abból ered, hogy az alapoknál a természetes számok fogalmát alakítsuk ki először, ezzel végeznek a tanulók műveleteket, majd később alakítsák ki a negatív számk fogalmát. (Lásd a Számfogalom kialakítása fejezetet!)

2. Másrészt meg kell tanítanunk arra is a tanulókat, hogy az előjel „belefoglalható” a műveleti jelbe. Ez pedig azért szükséges, mert a fogalomrendszer kiépítése során, a tanulók műveletvégzési sebességét növelni kell, törekedni kell az egyszerűségre, a maximális begyakorlás elérésére. Erre kínál lehetőséget a műveleti és a előjel „összevonása”. Arra törekednünk kell azonban, hogy ez ne legyen verbális, értelem nélküli munka, hanem a tanulók minden esetben tudják indokolni tevékenységüket.

Az előjellel kapcsolatban egy másik probléma is jelentkezik. Arra a kérdésünkre, hogy – a értéke milyen, a tanulók többsége nagy valószínűséggel negatívat mond. Ez a hibalehetőség is a fogalom összetettségéből adódik.

A probléma gyökere az, hogy (– a)-ban az előjel két funkciót is betölthet:

1. egyrészt jelöljük vele konkrét negatív számokat (– 3; – 2; – 5 stb);
2. másrészt jelöljük vele az „ellentett”-képzést (elem additív inverzének képzését.)

E kettős funkciót – szintén sok konkrét példával – tisztáznunk kell a számok előjeleinek, majd később a változók előjeleinek tanításakor. (Számok behelyettesítésével meg kell mutatnunk, hogy (– a) éppúgy lehet pozitív, negatív, mint 0. Ez csak az a értékétől függ.)

5. Hatvány, alap, kitevő

A hatvány fogalmát a szorzásra vezetjük vissza. Azonos tényezők sorozatát felirhatjuk hatvány alakban. A pozitív egész kitevős hatványok is csak kiindulási alapját képezik a hatványfogalom kialakításának, hiszen ez a definíció (an olyan n-tényezős szorzat, amelynek minden tényezője a) a törtkitevőjű, vagy a negatív kitevőjű hatványoknál már nem alkalmazható.

A hatványok értelmezése után tanítjuk a hatvanyozás azonosságait, amelynek segítségével megerősíthetjük az

\[a^0 = 1 \ ha \ a \neq 0 \ és \ az \ a^{-n} = \frac{1}{a^n}, \ ha \ a \neq 0, \ n \in \mathbb{N} \]

értelmezéseket, de ez nem tekinthető bizonyításnak. (Ezek definíció szerint irhatók így).
Rendszerszemlélet a matematika tanításában

Tehát:

\[
\frac{a^m}{a^n} = a^{m-n} = a^0 = 1, \ a \neq 0
\]

(1.26)

csak azt jelenti, hogy a definíció szinkronban van a hatványozás műveleteivel.

A hatvány és az együttható fogalmának kialakításánál bőségesen szerepeltetnünk kell párhuzamosan a kettőt, ily módon kerülhetjük el a gyakran bekövetkező hibát:

\[
2^3 = 3 \cdot 2; \ \text{vagy} \ a^3 = 3a,
\]

azaz, amikor a kitevő és az együttható között nem tesznek különbséget a tanulók.

A hatványok előjele is hibalehetőségeket rejt magában: \(-x^2 \) és \((–x)^2\) között nem érzik a tanulók a különbséget. Konkrét példákon ez is szépen mutatható.

Például:

\[
-5^2 = -5 \cdot 5 = -25; \ (-5)^2 = (-5) \cdot (-5) = 25.
\]

6. Összeg, különbség, szorzat, hányados

Itt főleg arra kell helyezni a hangsúlyt, hogy amíg a számoknál a konkrét műveletet el tudjuk végezni, itt sokszor csak ki tudjuk jelölni. Ezen műveletek helyes értelmezése az algebrai kifejezések csoportosításánál „térül” meg.

Például: \(a + a + a = 3a \), de \(a + b \) már nem írható fel szorzat alakban.

7. Műveleti tulajdonságok

A műveleteknél, illetve a számfogalom kialakításánál mondottakat alkalmazzuk az algebrai kifejezésekre. (Együttható – változó; összeg szorzása – kiemelés stb.)

Így lesz a külső rendszer eleme része a belső struktúrának. Főleg a kommutativitást, az asszociativitást és a disztributivitást alkalmazzuk gyakran.

8. Algebrai kifejezések

Algebrai kifejezéseknek nevezzük azt a kifejezést, amelyben csak számok és betűk összege, különbsége, szorzata, egész kitevőjű hatványa, hányadosa és gyöke szerepel véges sokszor.

9. Helyettesítési érték

Ha az algebrai kifejezésben előforduló változók helyére az alaphalmaz elemeit írjuk, és ezekkel elvégezzük a kijelölt műveleteket, akkor megkapjuk az algebrai kifejezés helyettesítési értékét. Itt a számfogalom kialakításánál tárgyalt műveleteknek és azok tulajdonságainak alkalmazása kerül előtérbe.

10. Algebrai kifejezések azonossága

Két algebrai kifejezés azonos, ha alaphalmazuk és értelmezési tartományuk megegyezik, és ha az értelmezési tartomány bármely elemét helyettesítjük be a változók helyére, a helyettesítési értékük minden esetben megegyezik.

Konkrét példákkal megmutathatjuk, hogy ebben az esetben a két kifejezés olyan alakra hozható, amelyekben mind a változók, illetve azok hatványai, mind az együtthatók és a kijelölt elvégzendő műveletek megegyeznek.

Például: \(xy^2 + 2xy \equiv xy(y + 2) \)
Többek között a szorzattá alakítás, a zárójelbontás, a hatványozás, illetve a lehetséges összevonások elvégzése után kapunk azonos algebrai kifejezéseket.

11. Egytagú, többtagú algebrai kifejezések

Az olyan algebrai kifejezést, amely összeget, vagy különbséget legfeljebb valamelyik tényezőjében tartalmaz, egytagú kifejezésnek nevezzük.

Például egytagú kifejezés:

\[
\begin{array}{c}
x \cdot y , \\
\frac{3x}{2} , \\
(x+y) \cdot 5
\end{array}
\]

Az utóbbi olyan egytagú kifejezés, amelynek egyik tényezője kéttagnak.

A pontos, de kissé elvont definíció helyett szerencséssebb megfelelő példákkal megmutatni az egytagú és a többtagú kifejezések közti különbséget. Egyenletek azonos átalakításánál vesszük ennek az ismeretnek nagy hasznát. (Lásd később.)

Ebből az is kiderül, hogy egy egytagú kifejezés többtagúval is lehetséges, és viszont.

Mind az összeg szorzattá alakítását (kiemelést), mind a szorzat összeg alakban történő felírását meg kell mutatnunk.

Például:

\[(y + 5) \cdot x = yx + 5x ,
xy + 5x = x(y + 5) .\]

A kiemelésnél gyakori hiba a következő:

\[x^2 + xy + x = x(x + y)\]

Ilyenkor célszerű megmutatni, hogy \(x = 1 \cdot x\), azaz kiemelésnél a második tényezőből az \(1\) összeadandó hiányzik, ennek megfelelően:

\[x^2 + xy + x = x(x + y + 1) .\]

Célszerű – a szorzást elvégezve – mindig ellenőrizni a munkánkat.

12. Egynemű, különnemű algebrai kifejezések

Az olyan egytagú algebrai kifejezéseket, amelyek legfeljebb együttthatóikban különböznek egymástól (ha az együtttható nem \(0\)), egynemű algebrai kifejezéseknek nevezzük. Az olyan egytagú algebrai kifejezéseket, amelyek változóikban, vagy azok hatványainban különböznek egymástól, különnemű algebrai kifejezéseknek nevezzük.

Az egynemű algebrai kifejezések összevonnathatók, a különneműek nem.

Egynemű algebrai kifejezéseket úgy vonunk össze, hogy az együttthatókat összevonjuk, a betűkifejezést változatlanul leírjuk.

A fogalom látszolag egyszerű, de a tanulók hibáinak gyakorisága nem ezt mutatja.

Néhány ilyen hiba:

\[x + 2x^2 = 3x^2 , \text{ (vagy } 2x^3 , \text{ vagy } 3x^3 \text{ stb.)}\]

Itt az „egynemű – különnemű” fogalom nem tisztázott.
Más jellegzetes hiba:

\[3a - a = 3 \, . \]

Ez szintén a fogalmak tisztázatlan voltára, és helytelen analógiára vezethető vissza.

Konkrét példákkal lehet illusztrálni ennek helytelenességét:

3 almából 1 alma az 2 alma, és nem „pusztán” 2 .

A helytelen analógia az osztással áll fenn. A 3a : a = 3 összefüggést olyan esetre is alkalmazza a tanuló, ahol ez nem áll fenn.

Ezek a fogalmak az egyenletek, egyenlőtlenségek megoldásához nélkülözhetetlenek.

13. Algebrai kifejezések szorzása, osztása

Ennek az előzménye, az előkészítése megtalálható a számfogalom kialakítása fejezetben. Itt az alábbi algoritmust kell kialakítanunk. Az egytagú algebrai kifejezéseket a következőképpen szorozzuk össze, vagy osztjuk el egymással:

1. az együtthatók szorzatát, vagy hányadosát kiszámíthatjuk,
2. az egyenlő alapú hatványok szorzatát, vagy hányadosát felírjuk hatványalakban,
3. a különböző változók szorzatát, vagy hányadosát csak jelöljük.

A műveleti tulajdonságok közül a kommutativitást és az asszociativitást használjuk, illetve a hatványozás azonosságait.

Többtagú algebrai kifejezést (összeget, különbséget) úgy is szorzhatjuk, hogy a többtag minden tagját megszorozzuk az egytaggal, és utána elvégezzük az összevonást.

Tehát visszavezetjük az egytagú kifejezések szorzására. Erre az ismeretre viszont a többtagnak többször való szorzása vezethető vissza.

Konkrét példákon megmutatjuk, hogy az osztásra is hasonlóak igazak.

A többtagok szorzásánál az előbb említett műveleteken túl a disztributivitás kerül előtérbe.

Mind a zárójelbontást, mind a kiemelést mindig celsiuszerű ellenőrizni a másik művelettel.

14. Algebrai egész, algebrai tört

Egész algebrai kifejezésnek nevezünk egy algebrai kifejezést, ha nem tartalmaz törtet, vagy ha tartalmaz, akkor a tört nevezőjében nincs változó. Vagy: két algebrai kifejezés hányadosát (ha a nevezőben változót tartalmaz) algebrai törtkifejezének nevezzük.

Ezt az ismeretet is kapcsoljuk a műveletekhez, azon belül is a 0-val való osztás problematikájához. Mivel a 0-val való osztást nem értelmezünk, így algebrai törtkifejezés nevezőjének helyettesítési értéke nem lehet 0. Az adott törtkifejezés értelmezési tartományából ezt az értéket ki kell zárni.

Ebből következően:

\[
\frac{(x + y)^2}{x + y} \text{ nem azonos } x + y - nal} \neq \frac{x}{x + y} \quad (1.28)
\]
hiszen a jobb oldalnak minden valós \((x ; y)\) számpár beletartozik az értelmezési tartományába, a bal oldalon viszont \(x + y = 0\) egyenletnek megfelelő értékpárokat ki kell zárni az értelmezési tartomány elemei közül.

Mindenképpen hangsúlyoznunk kell a törtek és az algebrai törtkifejezések közti különbséget, hiszen ez gyakori analógiás hibaforrás a tanulóknál.

Például:

\[
\begin{array}{c}
\frac{x+2}{3} \text{ algebrai egész, de az } \frac{x+2}{3x} \text{ algebrai tört}
\end{array}
\]

15. Racionális és irracionális algebrai kifejezések

Ha egy algebrai kifejezésben nincs a betűkifejezések ből történő gyökvonás, akkor ennek a kifejezésnek a neve racionális algebrai kifejezés. Ha előfordul gyökvonás a változóból, akkor a kifejezés irracionális.

Itt is hangsúlyoznunk kell, hogy nem a gyökvonás ténye a meghatározó, hanem a változóból (a betűből) történő gyökvonás.

\[
\begin{array}{c}
\sqrt{2(x+3)} \quad \text{ racionális, de } \sqrt{2x+3} \quad \text{ irracionális kifejezés}
\end{array}
\]

A helytelen analógia – a racionális és irracionális számokkal – még azt is eredményezheti, hogy a tanuló a két egész algebrai kifejezés hányadosát tekinti racionális algebrai kifejezésnek (ami közismerten algebrai tört). Ellenpéldákkal mutathatjuk meg a tévedését.

Például:

\[
\begin{array}{c}
\frac{2y+3x}{5\sqrt{z^3}} \text{ racionális törtkifejezés, de a } \frac{3\sqrt{x^2} = x^2}{3} \text{ kifejezés irracionális algebrai tört.}
\end{array}
\]

Természetesen a fenti definícióban a gyökök helyett racionális, vagy tört hatványkitevőt is mondhattunk volna, ha a kitévő nem egész szám.

Például:

\[
\begin{array}{c}
\frac{x^2 - 2x}{x(x+3)} = 0, \quad A: = Q
\end{array}
\]

ez is irracionális algebrai kifejezés.

Mint látható az eddig ismertetett fogalmak, ismeretek rendszere szorosan kapcsolódik a korábban tagolt fogalomrendszerekhöz, egyes fogalmak, ismeretek mindegyik fogalomrendszerek elemei. Ez jól mutatja az egyes témakörök külső struktúráját.
A későbbiekben látni fogjuk, hogy az algebrai kifejezések itt felsorolt ismeretei mind nélkülözhetetlenek a különböző típusú egyenletek, egyenlőtlenségek, egyenletrendszerek megoldásához. Amíg ezekkel az alapismeretekkel nem rendelkeznek a tanulók, az egyenletek megoldásának tanítása csak meddő próbálkozás.

16. Polinomok

A polinomok algebrája is jelentős kutatási terület.

Az olyan algebrai kifejezést, amelyekben a változókon véges számú összeadást, kivonást, szorzást és nemnegatív egész kivevőjű hatványozást végzünk a polinomnak nevezzük.

Az egytagú polinomot monomnak, a kéttagút binomnak, a háromtagút trinomnak nevezzük.

Megfelelő konkrét példákon és ellenpéldákon mutathatjuk meg a polinomok specifikus tulajdonságait.

17. Polinomok fokszáma

Egy egytagú polinom fokszámán a polinomban lévő változók kitevőinek összegét értjük. Egy többitagú polinom fokszámán a legmagasabb fokú tagjának fokszámát értjük.

18. Polinomok azonossága

Két polinom akkor azonosan egyenlő, ha a megfelelő együtthatóit rende megegyeznek. (A megfelelő szó itt a polinomot alkotó azonos egytagú kifejezések együtthatóira vonatkozik.)

Ezek az értelmezések teljesen összhangban vannak az algebrai kifejezésekének mondottakkal, és mindkét ismeretet alkalmazzuk a magasabbfokú egyenletek megoldásánál.

19. Egyhatározatlanú polinomok

Ennek előzetes tisztázása azért szükséges, mert az egyváltozós első és másodfokú algebrai egyenleteket ennek segítségével fogjuk bevezetni.

Az egyhatározatlanú (egyváltozós) polinomok általános alakja:

\[T(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \ldots + a_1 \cdot x^1 + a_0 \] , ahol az

\[a_0, a_1, \ldots, a_n \in \mathbb{R} , n \in \mathbb{N} , x \text{ a változó.} \]

n a polinom fokszáma, ha an ≠ 0 .

20. Műveletek egyváltozós polinomokkal

A polinomok halmazán is értelmezhetjük az összeadás és a szorzás műveletét, és azoknak is megvannak a korábban tárgyalt tulajdonságai:

\[T_1(x) + T_2(x) = T_3(x) ; T_1(x) \cdot T_2(x) = T_3(x) \]

Tehát két polinom összege és szorzata is polinom.

Tulajdonságai:

Kommunikativitás:

\[T_1(x) + T_2(x) = T_2(x) + T_1(x) ; T_1(x) \cdot T_2(x) = T_2(x) \cdot T_1(x) \]

Asszociativitás:

\[(T_1(x) + T_2(x)) \cdot T_3(x) = T_1(x) \cdot (T_2(x) + T_3(x)) \] ;
(T1(x) ∙ T2(x)) ∙ T3(x) = T1(x) ∙ (T2(x) ∙ T3(x))

Disztributivitás:
(T1(x) + T2(x)) ∙ T3(x) = T3(x) ∙ (T1(x) + T2(x)) = T1(x) ∙ T3(x) + T2(x) ∙ T3(x)

Ezen túl értelmezhetjük a polinomok maradékos osztását is, ami a szorzatot alakítást, vagy a magasabbfokú egyenletek gyökéinek meghatározását segíti elő. Megmutatjuk, hogy a polinomok osztásának algoritmusa teljesen megegyezik az egész számok halmazán értelmezett maradékos osztásával.

Természetesen mindezen műveleteket és ezeknek a tulajdonságait konkrét, alacsonyabb fokú (első – negyedfokú) polinomokkal végzett műveletekkel mutatjuk meg a tanulóknak, majd párhuzamot vonunk a számfogalom kialakításánál tárgyalt ismeretekkel. Ez nagymértékben segíti a tanulók matematikai rendszerszemléletének kialakítását.

21. Algebrai egyenletek

A tanulók ismereteinek bővülésével egyre pontosabban tudjuk definiálni az egyenletet.

5. osztályban:
Az olyan nyitott mondatot, amelynek állítmánya az egyenlőség jel, egyenletnek nevezzük.

7. osztályban:
Ha két algebrai kifejezést az egyenlőség jelével kapcsolunk össze, akkor egyenletről beszélünk. (Feltéve, ha tartalmaz változót.)

Középiskola:
Algebrai egyenletnek nevezzük az olyan egyenletet, amelynek mindkét oldalán algebrai kifejezés áll. (És változót is tartalmaz.)

Minden algebrai egyenlet véges lépésekben hatványozásokkal, átalakításokkal olyan alakra hozható, hogy az egyik oldalán egy polinom, a másik oldalán 0 áll. Ebből adódóan az algebrai egyenlet a következőképpen értelmezzük:
Legyen f(x) egy tetszőleges számhalmazon értelmezett polinom.

Az f(x) = 0 alakú egyenletet az adott számhalmaz fölötti algebrai egyenletnek nevezzük.

Az alaphalmaznak azon z elemét, amelyre teljesül, hogy f(z) = 0, az egyenlet gyökéne mondjuk.

(Az ilyen Z értéket megoldásnak is szokták nevezni. A megoldás szó viszont nemcsak számokat jelenthet, hanem a gyökök meghatározásának folyamatát is jelentheti, így mi a gyökök elnevezést javasoljuk bevezetni és használni.)

Furcsa lenne azt mondani a Viéte-formuláknál, hogy „a megoldások és az együtthatók közti összefüggés”.)
Az f1(x) = f2(x) alakú egyenlet zérusra redukált alakja az f(x) = 0 írásmódszer.

22. Algebrai egyenlőtlenségek

Az egyenletekkel teljesen analóg módon tárgyalható. Amiben eltérnek egymástól, arra külön felhívjuk a figyelmet az egyenlőtlenségek megoldásakor. Külön nem részletezzük.

23. Az egyenlet megoldása

Egyenletet megoldani annyit jelent, hogy megkeressük az alaphalmaznak mindazon elemeit, amelyeket az f(x) = 0-ba, vagy az f1(x) = f2(x)-be behelyettesíve igaz kijelentést kapunk.

A gyökök halmaza adja az egyenlet igazsághalmazát.
24. Egyenletek ekvivalenciája

Két egyenletet ekvivalensnek nevezünk, ha egyiknek minden megoldása a másiknak is megoldása és viszont.

Az egyenletek megoldása során mindkét oldalon végezhetünk olyan átalakításokat, hogy az eredetivel ekvivalens egyenletet kapunk (azaz győzeik kölcsönösen megegyeznek).

Ekvivalens egyenleteket ekvivalens átalakításokkal, vagy azonos átalakításokkal nyerhetünk.

Ekvivalens átalakítások

Az egyenlet mindkét oldalához ugyanazon polinomok hozzáadása, vagy kivonása, mindkét oldalának ugyanazon 0-tól különböző számmal való szorzása, vagy osztása.

(Ezt az eljárást nevezzük mérlegelvnek.)

Azonos átalakítások

25. Következmény-egyenletek

Ha olyan átalakításokat végzünk az egyenlet megoldása közben, amelyek után az eredeti és az új egyenlet győzei nem egyeznek meg, azaz az egyenletek nem lesznek ekvivalensek egymással, akkor következmény-egyenletet kapunk. Az ilyen átalakítás után „gyökvesztés” és „gyöknyerés” is felléphet. Ezért itt különösen fontos a megoldásunk helyességének és teljességének ellenőrzése.

Például következmény-egyenletet kapunk, ha mindkét oldalt négyzetre emeljük, mindkét oldalból gyököt vonunk, mindkét oldalt szorzukkan, vagy osztjuk egy algebrai kifejezéssel stb.

26. Egyéb megoldási módok

1. Próbálgatás (az alaphalmaz elemeinek behelyettesítése)

Ezzel a módszerrel való megoldást elsősorban akkor használjuk, amikor bizonyos műveleti tulajdonságokat, eljárási módokat még nem ismernek a tanulók, vagy az alaphalmaz végés számú, (és kevés) elemet tartalmaz, amikor egyszerűbb az elemek behelyettesítésére, mint a bonyolult megoldási mód megtalálására. Ekkor is szem előtt kell tartanunk, hogy az alaphalmaz minden eleméről el kell döntenünk, hogy eleme-e az igazsághalmaznak, vagy sem.

Például:

Legyen az alaphalmaz a 10-nél kisebb pozitív egész számok halmaza. Oldjuk meg a következő egyenletet!

\[x^2 - 5x + 6 = 0 \]

Amikor a tanulók még nem ismerik a másodfokú egyenlet megoldóképletét, és a szorzattá alakítás sem ismert, akkor csak próbálgatással, azaz az alaphalmaz minden elemének behelyettesítésével tudják megoldani az egyenletet.

A próbálgatással való megoldás azért is szükséges, mert a műveletek elvégzését igen hatékony módon lehet vele gyakorolni. (Különböző előlőel számok összeadása, kivonása, szorzása, osztása, hatványozás, gyökvonás.)

1. Szorzat, hányados vizsgálata

Itt is utalunk a műveleteknél korábban tanultakra.

Nevezetesen:

Egy szorzat pontosan akkor 0, ha valamelyik tényezője 0.

Hányados pontosan akkor 0, ha a számláló (osztandó) 0, de ugyanakkor a nevező nem 0.
Például:

\[x^2 - 2x = 0 \; ; \; A: = \mathbb{Q} \, . \]

Megoldása: \(x(x - 2) = 0 \, , \)
ahonnan: \(x_1 = 0 \; ; \; x_2 = 2 \, . \)

\[
\frac{x(x-2)}{x(x+3)} = 0, \; \text{de} \; x \neq 0
\]

Más példa:

\[
\frac{x-2}{x+3} = 0
\]

Megoldás:

\[
\sqrt{(x-1)^2} \neq x-1 \, , \; \text{hanem} \; \sqrt{(x-1)^2} = |x-1|
\]

Így: \(x = 2 \, . \)

Az algebrai törtkifejezéseknél tanultakat kell itt feleleveníteni, s alkalmazni az alaphalmaz és az igazsághalmaz megállapításánál.

1. Bizonyos összefüggések felhasználásával

Például az \(x^2 = 4 \, ; \) vagy \(|x| = 6 \) típusú feladatok tartoznak ebbe a csoportba.

Ezekben az esetekben a korábban tanult fogalmakat kell alkalmazni az egyenletek megoldása során.

1. Grafikus megoldás

A függvények ismeretrendszerére vezethető vissza. Az egyenlet két oldalán álló algebrai kifejezést egy-egy függvény egyenletének tekintjük, s azt vizsgáljuk, hogy a közös értelmezési tartomány mely elemei esetén egyeznek meg a függvényértékek egymással, valamint azt, hogy ez hogyan olvasható le a függvények grafikonjáról. Ezt a megoldási módot akkor javasoljuk, amikor a függvények ábrázolása már hibátlanul megy.

Az egyenletekkel analóg módon, és ugyanabban az időben tárgyaljuk az egyenlőtlenségekkel kapcsolatos ismereteket is.

27. Az egyenletek típusai

A többi ismeretrendszer bővítésével haladunk a lineáris egyenletektől a másodfokú, vagy magasabb fokú egyenletek felé.

Az \(ax + b = 0 \) elsőfokú, illetve az \(ax^2 + bx + c = 0 \) másodfokú (vagy ilyen alakra hozható) algebrai egyenletek megoldásaival foglalkozunk a közoktatásban.

(Ezzel megegyezően ilyen típusú egyenlőtlenségekkel is.)
Meg kell mutatnunk, hogy minden elsőfokú egyenletnek, egyenlőtlenségnek van valós megoldása, de ez nem igaz a másodfokú, vagy gyököt tartalmazó egyenletre (egyenlőtlenségre).

A másodfokú egyenlet diszkriminánsának a vizsgálata, a Viéte-formulák, a gyöktényezős alak szép matematikai problémák tárgyalását teszi lehetővé.

A változó gyökét tartalmazó, azaz irracionalis egyenleteket is együtt kezeljük az algebrai egyenletekkel, mert hatványozással az \(f(x) = 0 \) algebrai egyenleettel azonos alakra hozható. Viszont a megoldás során az eltérésekre fel kell hívni a figyelmet.

Nevezetesen:

1. Irracionális egyenleteknél, egyenlőtlenségeknél mindig meg kell határozni a bennük előforduló kifejezések értelmezési tartományát.

2. Az egyenlőtlenségek négyzetre emelése előtt meg kell vizsgálnunk, hogy milyen előjelű értékek szerepelnek a két oldalon, illetve a változók értékét hogyan befolyásolja a hatványozás.

3. A négyzetre emelés során gyakran kapunk hamis gyököket.

(Lásd következményegyenlet.)

1. A korábbi ismereteket pontosan kell alkalmaztatni.

Például:

\[
\left(\sqrt{2-x}\right)^2 \neq (2-x)^2
\]

(1.30)

(Ez a másodfokú egyenleteknél is gyakran hibaforrás.)

1. A hatványozás és a gyökvonás csak megfelelő feltételek esetén cserélhető fel.

Például:

\[
x = \begin{cases}
x, \text{ ha } x \geq 0 \\
-x, \text{ ha } x < 0
\end{cases}
\]

A két oldalon álló kifejezéseknek más az értelmezési tartományuk.

Olyan 2-nél magasabbfokú egyenletekkel foglalkozunk, amelyek megoldását vissza tudjuk vezetni a másodfokú egyenletek megoldására.

Ilyen eljárások lehetnek:

1. helyettesítés, új változó bevezetése,
2. kiemelés, szorzattá alakítás,
3. próbálgatás, szorzattá alakítás,
4. polinomok osztása, szorzattá alakítás.
Az utóbbi 3 esetben az a közös, hogy találunk egy gyököt, és ennek segítségével a 3 eset valamelyikének alkalmazásával alacsonyabb fokú egyenletet kapunk.

Az abszolútértéket tartalmazó egyenleteket is együtt tárgyaljuk az algebrai egyenlettel. Tehetjük, hiszen az

\[
\frac{1}{a} + \frac{1}{x} \geq 2, \quad a \in \mathbb{R}^+
\]

(1.31)

\[x, \text{ ha } x \geq 0\]

\[|x|\]

\[-x, \text{ ha } x < 0\]

összefüggéssel egyszerűen algebrai egyenletté alakíthatjuk.

28. Egyenletrendszerek

Egyenletrendszerekét beszélünk, ha két vagy több többszorosan merően egyenlet közös megoldását keressük. Ha egy egyenletrendszer n-ismeretlenes, vagyis összesen n változót tartalmaz (például: x₁, x₂, … , xₙ), akkor azokat a rendezett (z₁, z₂, … , zₙ) szám n-eseteket keressük, amelyeket az egyenletrendszer egyenleteibe, a megfelelő ismeretlenek helyébe behelyettesítve, minden esetben igaz egyenlőséget kapunk.

Tehát tudatosítanunk kell tanulóinkban, hogy nem n darab külön álló – egymástól független – egyenlet az egyenletrendszer, hanem nagyon is összefüggő, hiszen a (z₁, z₂, … , zₙ) szám n-esek minden egyenletet ki kell elégtetni.

29. Az egyenletrendszerek ekvivalens átalakításai

1. két egyenlet felcserélese
2. egyik egyenlet többszörösének hozzáadása a másik egyenlethez
3. minden egyenleten külön-külön végrehajthatók az egyenleteknél tárgyalt ekvivalens átalakításokat.

Természetesen, ha az = jel helyett < , > , ≤ , ≥ jelek szerepelnek az egyes nyitott mondatokban, akkor egyenlőségrendszerről beszélünk.

30. Az algebrai egyenletrendszerek megoldása módszerei

1. behelyettesítő módszer
2. egyenlő együttáthatók módszere
3. összehasonlító módszer
4. grafikus megoldás
5. új ismeretlenek bevezetésének módszere

A közoktatásban csak két-, legfeljebb háromismeretlenes első-, legfeljebb másodfokú egyenletrendszerekkel foglalkozunk. A többi egyenlettípus — trigonometrikus, logaritmixus, exponenciális — az adott témakör fogalomrendszerében tárgyaljuk.

Végül zárjuk az egyenlet, egyenlőtlenségek, egyenletrendszerek témakört három olyan megfontolandó jó tanáccsal, amit mindenkiéppen bele kell plántálnunk a tanulókba.

2. El kell dönteni a megoldás útját, módját — ha egyáltalán meghatározhatók a gyökök.
Mi a célravezető módszer?
1. Ellenőrizni kell a megoldást. Minden gyököt megkaptunk, valóban gyökök az értékek, nincsenek-e hamis gyökök, nincs-e gyökvesztés?

31. Azonosságok

Egy egyenletet azonosságnak nevezünk, ha az igazsághalmaza megegyezik az alaphalmazával.

(A azonos egyenlőtlenségre ugyanez igaz.)

Bármennyire is a fogalomrendszer „végén” szerepeltetjük ezt a fogalmat, a valóságban lényegesen korábban taníthatjuk. Az egyenletek azonosításával egy időben, a gyökök vizsgálatakor és ellenőrzésekor, már példákkal illusztráljuk ezeket a speciális egyenleteket. Egy példával mutatjuk meg, hogy miért nem jó az azonosságra az a definíció, hogy „a változó minden szóba jöhető értéke gyöke az egyenletnek.”

Például az \((x - 2)(x - 3) = 0\) egyenlet nem azonosság az egész számok halmazán, viszont azonosság az \(A = \{2 ; 3 \}\) kételemű alaphalmazon.

Az azonosságok, – mint egyenletek – megoldásánál ugyanazokat a lépéseket alkalmazzuk, mint az egyenleteknél.

32. Nevezetes azonosságok

Amint az algebrai kifejezéseknel túljutottunk a többtag szorzása többtaggal témakörön, már előhozhatjuk az egyszerűbb konkrét azonosságokat, bizonyítással együtt.

Mi a bizonyítások ismertetésétől ebben a jegyzetben eltekintünk, de felhívjuk a figyelmet arra, hogy az algebrai bizonyításokon túl célzott geometriai bizonyításokat is alkalmazni. Egyrészt szemléletes, másrészt a divergens gondolkodást is fejleszti, nem beszélve arról, hogy a jellegzetes típushibák megmutathatók – ezáltal elkerülhetők – a geometriai bizonyítások tanításaival.

A következő nevezetes azonosságokat taníthatunk a közoktatásban:

1. \((a \pm b)^2 = a^2 \pm 2ab + b^2\)
2. \((a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3\)
3. \((a + b)(a - b) = a^2 - b^2\)
4. \(a^3 + b^3 = (a + b)(a^2 - ab + b^2)\)
5. \(a^3 - b^3 = (a - b)(a^2 + ab + b^2)\)
6. \(a^n - b^n = (a - b)(a^{n-1} + a^{n-2} \cdot b + a^{n-3} \cdot b^2 + \ldots + a^2 \cdot b^{n-3} + a \cdot b^{n-2} + b^{n-1})\)

Célszerű megmutatnunk, hogy az an + bn csak akkor írható fel ilyen szorzat alakban, ha n ≥ 3 páratlan természetes szám.

33. Néhány nevezetes egyenlőtlenség

Érdekeségént kép mellett ajánlunk néhány olyan összefüggést, amit a jobb képességű tanulóknak mindenképpen célszerű megmutatni.

1. \[a^2 + b^2 \geq 2ab, \quad a, b \in \mathbb{R} \] (1.32)
2.
3.

\[a^2 + b^2 + c^2 \geq ab + ac + bc, \quad a, b, c \in \mathbb{R} \tag{1.33} \]

4.

\[\sqrt{ab} \leq \frac{a + b}{c}, \quad a, b \in \mathbb{R}, \quad a \geq 0, \quad b \geq 1.34 \]

34. Néhány nevezetes összeg

Mind a sorozatok, mind az egyenletek fogalomrendszeréhez kapcsolhatók a következő összefüggések. Ezekkel egyrészt a két fogalomrendszer közti kapcsolatot (külön struktúra) mutatjuk be, másrészt jó alapot adunk a teljes indukciós bizonyítások begyakorlásához.

1.

\[1 + 2 + 3 + \ldots + (2n - 1) = n^2 \tag{1.36} \]

2.

\[2 + 4 + 6 + \ldots + 2n = n(n + 1) \tag{1.37} \]

3.

\[1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \tag{1.38} \]
5.

\[
1^3 + 2^3 + 3^3 + \ldots + n^3 = \left[\frac{n(n + 1)}{2} \right]^2
\]

(1.39)

(1.40)

Összegezve:

Az algebrai kifejezések, egyenletek, egyenlőtlenségek fogalomrendszere nagyon összetett és szerteágazó, minden egyéb témakörrel kapcsolatba hozható. A rendszer kiépítése már alsó tagozatban megkezdődik (halmazok, kijelentések, nyitott mondatok, számfogalom) és a 12. osztálynál sem fejeződik be. Nagyon sok ide tartozó ismeretet – amit ebben a fejezetben nem tárgyalunk – csak a felsőoktatásban tanítunk. Ahogy bővül a tanulók matematikai ismeretrendszere más témakörökön keresztül, úgy tudjuk szakaszosan és folyamatosan bővíteni az algebra e témakörének ismeretrendszerét is. A tanárnak mindig figyelni kell az egymásraépítettségre és a fokozatosságra.

Kulcsszavak

algebrai kifejezések és típusai

hatványok

polinomok, fokszám, egyenlőség

helyettesítési érték

eyenletek és típusaik

megoldási módok

eyenlőtlenségek

eyenletrendszerek

azonosságok

nevezetes azonosságok

nevezetes egyenlőtlenségek

nevezetes összegek

20. Kérdések, feladatok:

1. Elemezen egyenletmegoldásokat az ekvivalens, és az azonos átalakítások szemszögéből!

2. Gyűjze össze azon ismereteket az algebrai kifejezések témakörből, amelyek a másodfokú egyenletek megoldásához nélkülözhetetlenek!

3. Keressen példákat a Hajdu-féle tankönyvcsaládból az egyenletrendszerek megoldásának módszereire!

Created by XMLmind XSL-FO Converter.
21. Kötelező irodalom:
1. Dr. Szendrei János: Algebra és számelmélet, főiskolai tankönyv
Tankönyvkiadó, Budapest, 1974
2. Faragó László: Szöveges feladatok megoldása egyenleettel
Tankönyvkiadó, Budapest, 1969
3. Dr. Czeglédy István: Matematika tantárgypedagógia II. főiskolai jegyzet
Bessenyei Kiadó, Nyíregyháza, 2004

22. Ajánlott irodalom:
1. Kratofil Dezső: Algebra
Műszaki Könyvkiadó, Budapest, 1973
2. Dr. Hajdu Sándor szerkesztésében: Matematika 5-12. tankönyvek
Műszaki Könyvkiadó, Budapest, 2004-2010

V. Relációk, függvények, sorozatok

Ennek roppant egyszerű a magyarázata. Már a primitív ember egyik legjelentősebb felfedezése volt az oksági viszonyok felismerése. A tapasztalat megtanította őket arra, hogy bizonyos eseményeket ugyanazok az események előznek meg, vagy ugyanazok az események követnek. Ennek függvényében érthető, hogy már elég korán jelentkeztek azok a törvények, hogy a mennyiségek közötti ok-okozati összefüggéseket matematikai eszközökkel fejezzék ki. A matematikai kutatásokban a függvény Descartes óta vált fontossá. Ő a függvényet megfeleltetésnek, egymáshoz rendelésnek értelmezte.

Voltak más elképzelések is, például Leibnizé, aki tetszőleges alakzatok és egy szakasz közti kapcsolatot tekintett függvénynek. Egyébként maga a „függvény” elnevezés Leibniztól származik. A későbbi kutatások Descartot igazolták. Majd Newton és Leibniz eredményei az infinitézimális számításokban, továbbá egy sor nagy matematikai kutató (Euler, D’Alambert, Lagrange, Fourier, Cauchy, Cantor, Weierstrass, Riemann stb.) munkássága nyomán alakult ki a ma is elfogadott függvényfogalom.

Nevezetesen:

A függvény két halmaz közti olyan megfeleltetés, hogy az egyik halmaz minden eleméhez a másik halmaz pontosan egy elem rendeli hozzá.

Ehhez kapcsolódó más megfogalmazások:

1. A függvény olyan \((x ; y)\) rendezett elempárok halmaza, amelyben minden \(x\)-hez pontosan egy \(y\) tartozik.

2. A függvény olyan binér reláció, amelyre igaz, hogy ha \((x ; y)\) és \((x ; y')\) mindegyike eleme a relációnak, akkor \(y = y'\).

3. A függvény valamely A halmaznak valamely B halmazba való olyan egyértelmű leképezése, amelyet meghatároz az \((x ; y)\) rendezett elempárok halmaza, ahol \(x \in A\) és \(y \in B\).

A függvények tanításának többféle módja ismert a közoktatásban. Van olyan elképzelés, hogy speciális alapfüggvényekkel, sorozatokkal vezetik be a függvényeket, (például egyenes arányosság, fordított arányosság, számtani sorozat, mértani sorozat, abszolútérték stb.), konkrét mintapéldákon szemléltetve a függvények
lényeges jegyeit, majd később általánosítják ezeket a tulajdonságokat, aminek alapján létrejön a függvények fogalmának szintézise.

Tehát már függvényről beszélnek akkor, amikor még nem értelmezték pontosan a függvényt.

Egyébként ez az út is járható, hiszen a tanulókhoz közelálló, korábbi ismereteiket meg nem haladó, konkrét példákon keresztül juttatjuk el az ismereteket hozzájuk. A másik út – amit mi is követünk – a függvények fogalomrendszerének felépítése a rendezett elempárok halmazától a függvények, sorozatok tulajdonságainak bemutatásáig. Az első felépítési módban a részismeretek összességéből tevődik össze a fogalomrendszer, a másik esetben az eredet, a felépítés módot, az egymásraépíttettséget hangsúlyozzuk.

Bármelyik felépítésmódodal is próbálkozunk, a végső célunk csak az lehet, hogy a relációk, függvények, sorozatok fogalomrendszerét kiépítsük.

Ahogy a Klasszikus algebra fogalomrendszerénél mondunk, itt is vannak olyan egyszerű és magasabbrendű fogalmak, amelyek más fogalomrendszernek is építőkövei. Ez ismét az egyes fogalomrendszerek közti szoros kapcsolatot, a matematika külső struktúráját (fogalomrendszerek közti kapcsolatát) mutatja.

23. A függvények, sorozatok, fogalomrendszere

1. Halmaz, elem, eleme

A függvény értelmezéséhez nélkülözhetetlen, hiszen a halmazok, illetve azok elemei közti megfeleltetéseket vizsgáljuk.

2. Descartes-szorzat, rendezett elempárok halmaza

A rendezett elempárok halmazát, azaz a két halmaz közti kapcsolapot ábrázolhatjuk az összes eset felírásával, táblázattal, nyíldiagrammal. (Azért célszerű így ábrázolni, mert ezekből közvetlenül levezethetők a függvények.)

3. Reláció

Két nem üres halmaz U és K elemei közti kapcsolat, vagy más néven megfeleltetés, összeefügges, hozzárendelés, latin szóval reláció a két halmaz elemeiből képezhető rendezett elempárok egy nem üres részhalmaza.

Például:

U = {a; b; c; d} ; K = {j; l; m; n}

A kapcsolat a két halmaz elemeiből közölt: az a, b, c, d személyek milyen k, l, m, n sportágat választhatnak.

Ábrázolása:

1)

\[
\begin{align*}
(a; j), \quad (a; k), \quad (a; l), \quad (a; m), \quad (a; n), \\
(b; j), \quad (b; k), \quad (b; l), \quad (b; m), \quad (b; n), \\
(c; j), \quad (c; k), \quad (c; l), \quad (c; m), \quad (c; n), \\
(d; j), \quad (d; k), \quad (d; l), \quad (d; m), \quad (d; n),
\end{align*}
\]

A Descartes-szorzatból megjelöljük a kapcsolatnak megfelelő rendezett elempárokat.
2) A táblázatban 1-est írunk azon rovatokba, ahol az elemek relációban vannak egymással.

3) Az U halmaz elemeiből nyíl vezet a K halmaz megfelelő elemeibe.

Az ilyen ábrázolásokból szépen látszik, hogy az U melyik eleméhez a K melyik elemét rendeljük hozzá. Természetesen a reláció esetén egy U-beli elemhez több K-beli elem is rendelhető és viszont.

(Vannak olyan elméletek is, hogy a reláció fogalmát tekintik a függvény alapfogalmának és a tulajdonságait axiómáknak, és nem a halmazelméletből származtatják a függvényt. Viszont ez a fajta megközelítési mód is visszatér később a halmazelméleti alapokra.)

4. Alaphalmaz, képhalmaz

Azt a halmazt (esetünkben az U-t), amelynek eleméhez hozzárendeljük egy másik halmaz elemeit alaphalmaznak a másik halmaz (esetünkben K) képhalmaznak nevezzük.

Jelölése: x ∈ U; y ∈ K; f: U → K ; x ↦ y

5. Hozzárendelések

A hozzárendeléseknek két fajtáját különböztetjük meg. Ezt konkrét példákkal meg is mutatjuk.

Egyértelmű a hozzárendelés, ha az alaphalmaz elemeinek legfeljebb egy képük van a képhalmazban. Egyébként a hozzárendelés többértelmű, azaz az alaphalmaz elemeinek több képük is van a képhalmazban.

Egyértelmű hozzárendelés:
Többértelmű hozzárendelés:

Ezeknél, mindkét hozzárendelés-típusnak még két fajtáját különböztetjük meg.

Nevezetesen: egy – egyértelmű; több – többértelmű

eyegy – többértelmű; több – többértelmű

Mindegyik hozzárendelés-típust sok-sok konkrét példaival kell szemléltetnünk, mert itt mutathatjuk meg azt, hogy a relációk közül az egyértelműek adják a függvények alapját. Sőt, már itt lehet érzékelhetni az egy-egyértelmű megfeleltetésekkel az invertálhatóságot, mintegy előkészítő jelleggel.

6. Függvény (mint speciális reláció)

A fentiek elsajátítása után már kimondható a függvény definicija.
Legyen az U halmaznak A egy nem üres részhalmaza. Az A halmazon értelmezett függvénynek nevezzük az olyan hozzárendelést, amelynél az A minden elemének pontosan egy képe van a K képhalmazban.

Az A halmazt a függvény értelmezési tartományának nevezzük (Df) – ezek elemei a független változók. A képelemekek halmaza – a függvényértékek – a képhalmaznak azok az elemei, amelyeket a független változó értékeihez rendelünk. A függvényértékek halmaza az értékkészlet (Rf).

Tudatosítanunk kell a tanulókban azt, hogy egy függvényt akkor tekintünk adottnak, ha megadjuk a függvény értelmezési tartományát (az A elemeit), a képhalmazt (a K elemeit) és a hozzárendelés szabályát.

Szám – szám függvény

A függvény fogalmának kialakítása során sokféle példát szükséges mutatnunk, amivel a függvények lényegét kiemeljük.

Egy függvényt szám-szám függvénynek nevezzük, ha az alaphalmaz és a képhalmaz is számhalmaz.

7. Jelölési módok

Kétféle jelölési móddal találkozhatunk a közoktatásban. Mindkettőt célszerű megmutatni a diákoknak és felváltva kell használni is azokat.

1. Az egyenlettel történő megadás:

\[y = f(x) \], ha az értelmezési tartomány: \(R \); az értékkészlet: \(R \).

1. Hozzárendeléssel történő megadás:

\[f: R \rightarrow R ; x \mapsto f(x) \]

Ez utóbbi jobban kifejezi a függvények lényegét (hozzárendelés, leképezés), viszont az egyenlettel történő megadás a gyakorlatban jobban használható. (Ábrázolás, inverz képzés, függvényértékek, függvénytulajdonságok meghatározása stb.)

8. A függvények megadása

1. értéktáblázattal

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
</table>
Akkor célszerű ezt a jelölésmodot alkalmazni, ha a függvény értelmezési tartománya véges számú elemet tartalmaz, vagy ha a függvény véges számú elempárral egyértelműen jellemezhető.

1. nyíldiagrammal

(Ennek alkalmazhatóságára is igaz az előbbi megállapítás.)

1. grafikonnal
Amennyiben a Descartes-féle koordinátarendszeret még nem tanulták a tanulók, akkor mindenféleben be kell vezetni ezt a fogalmat, és tisztázni kell az abszcissza és az ordináta fogalmakat.

(Egyéb témakörök tanításánál számos esetben találkozhattak a tanulók a koordinátarendszerrel.)

1. képlettel
\[f: \mathbb{R} \to \mathbb{R} ; \ x \mapsto x^2 + 3 \] vagy
\[Df = \mathbb{R} ; \ \mathbb{R}f = \mathbb{R} ; \ y \mapsto x^2 + 3 \]

1. utasítással (szöveggel)

Amennyiben az előző módon nem, vagy csak nagyon bonyolultan oldható meg a hozzárendelés szabálya, akkor alkalmazzuk ezt az eljárást.

Például:

Minden háromszöghöz rendeljük hozzá a magasságpontját.

9. Elemi függvények

1. Lineáris függvény

Már az általános iskola alsó tagozatán old meg a tanuló olyan feladatokat, amelyeknél az egyenes arányosság ismerete, alkalmazása szükséges. Felső tagozatban ezeket az összefüggéseket grafikonon is ábrázoljuk, így célszerű a lineáris függvényt is az egyenes arányossággal bevezetni, illetve a fogalmi jegyeket ezzel pontosítani.

Legyen \(m \) egy tetszőleges valós szám. Ekkor a valós számok halmazán, vagy annak részhalmazán \((A \subseteq \mathbb{R})\) értelmezett, valós értéket felvevő \(f: A \to \mathbb{R} ; \ m \mapsto mx \) függvényt egyenes arányosságának nevezzük.

Mint korábban említettük, az értelmezési tartomány és az értékkészlet megadásával az \(y = mx \) formában is megadható a függvény. Ez utóbbi megadási mód azért is szerencsés, mert így meg tudjuk mutatni az egyenes arányossággal való szoros kapcsolatot.

(Általános iskolai definíció: Két változó mennyiség egyenesen arányos, ha összetartozó értékpárjainak hányadosa állandó. A \((0;0)\) értékpárt kivesszük a hányadosképzésből.)

\[\frac{y}{x} = m = 0 \]

Ennek megfelelően az \(\frac{y}{x} = m = 0 \) alakban is írható, ami a zárójelben lévő definícióval ekvivalens.

Az értelmezés után vizsgáljuk az \(m \) meredekségét (iránytávolságjét).

Mindezt természetesen szemléletes ábrákkal végezzük.

1)
2) $y = mx$
$(m > 0)$

3) $y = mx$
$(m = 0)$
A középső ábra azt a meglepő állítást mutatja, hogy az $y = 0$ függvény is egyenes arányosságot fejezi ki, hiszen az arány állandó, ahol $x \neq 0$. Látható az a közös tulajdonság is, hogy a grafikonok mindegyike olyan egyenesre illeszkedik, amely áthalad az origón.

Az egyenes arányosság ismeretében már könnyen kialakítható a lineáris függvény fogalma.

Legyenek m és b tetszőleges valós számok. Ekkor a valós számok halmazán, vagy annak valamely részhalmazán ($A \subseteq \mathbb{R}$) értelmezett valós értéket felvevő $f: A \rightarrow \mathbb{R} ; m \mapsto mx + b$ függvényt lineáris függvénynek nevezzük.

Az értelmezés után megmutatjuk az m és a b valós számok jelentését, és az ábrázolásban betöltött funkcióját.

Fontosak a következő megjegyzések:

Ha $m \neq 0$, akkor az $y = mx + b$ elsőfokú függvény. Ennek grafikonja nem lehet párhuzamos az x tengellyel.

Ha $m = 0$, akkor ezt a speciális lineáris függvényt nulladfokú, vagy konstans függvénynek nevezzük. Ennek a grafikonja viszont párhuzamos az x tengellyel.

Egyenlete: $y = b$, vagy a leképezés szabálya $A \rightarrow \mathbb{B} ; x \mapsto b$.

A képi dominanciájú gondolkodásból a fogalmi gondolkodásba való átmenetet segítik a grafikonok. Ezeket minden képpen szükségesnek tartjuk bemutatni.

1)
Rendszermemlélet a matematika tanításában

2) \(y = mx + b \)
 \(m > 0 \)

3) \(y = b \)
 \(y = mx \)
 \(m = 0 \)
Függvényvizsgálatok:

Kezdetben a függvények grafikonjairól olvassuk le a megfelelő tulajdonságokat, később – a középiskola magasabb évfolyamain – már pontos értelmezéseket adhatunk. Ahogy bővül a tanulók ismerete, úgy egyre több tulajdonságot tárgyalhatunk.

A lineáris függvénynél tisztázzuk a zérushely, a monotonitás és a szigorúan monoton fogalmakat. A függvények további jellemzőit az újabb elemi függvények bevezetésénél értelmezzük.

1. A fordított arányosság függvénye

A bevezetés az egyenes arányosság tanításának analógiájára történhet. Itt is sok információval rendelkeznek a tanulók a fordított arányosságot illetően, ennek függvénytani megfelelője egyben az ismeretek szintézise.

\[
f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto \begin{cases}
1, & h_a x > 0 \\
0, & h_a x = 0 \\
-1, & h_a x < 0
\end{cases}
\]

Az fordított arányosságnak nevezzük.

A fordított arányosság grafikonja hiperbolára illeszkedik. Itt szemléletesen újabb tulajdonságokat mutatunk meg. Vizsgáljuk a paritást és a konvexitást.

A tanulók először itt találkoznak olyan függvénnyel, amelyik nem folytonos vonallal leírjolható függvény grafikonja.
1. Abszolútérték-függvény

Az $f: \mathbb{R} \rightarrow \mathbb{R} ; x \mapsto |x|$ (vagy $y = |x|$) függvényt abszolútérték-függvénynek nevezzük.

A elemzés újabb szempontja a szélsőérték.
1. Egészrész-függvény

A tanulók tanulmányaiban ritkán előforduló függvény, pedig elég széles körű a gyakorlati alkalmazhatósága.

Az $f: \mathbb{R} \rightarrow \mathbb{R} ; x \mapsto \lfloor x \rfloor$, (vagy másképpen $y = \lfloor x \rfloor$) függvényt egészrész-függvénynek nevezzük.

Egy $x \in \mathbb{R}$ egészrészén azt a legnagyobb egész számot értjük, amely nem nagyobb az x számnál.

Sok példával kell megvilágítanunk a fogalom lényegét, mert az elnevezés kissé félrevezető.

Például: $\lfloor 2.8 \rfloor = 2$, de $\lfloor -1.7 \rfloor \neq -1$, hanem $\lfloor -1.7 \rfloor = -2$, a definíció szerint.

(Hiszen $-1 > -1.7$.)
Újabb tulajdonságok:

A grafikon vizsgálatakor hangsúlyoznunk kell, hogy a függvény értelmezési tartománya a valós számok halmaza, értékészlete pedig, az egész számok halmaza.

A zérushely is különbözik a korábbi zérushelyektől, hiszen a \([0;1[\) intervallum minden pontja zérushely.

A grafikonról az is leolvasható, hogy a függvény nem folytonos. Az egész helyeknél „szakadása” van a függvénynek.

Mindenképpen meg kell mutatnunk, hogy a függvény monoton növekvő (nem szigorúan monoton), hiszen a változó növekvő értékeihez a függvényértékek nemesőkkenő értékei tartoznak.

1. Törtrész-függvény

Egy \(x \in \mathbb{R}\) valós szám törtrészén az \(x - \lfloor x \rfloor\) számot értjük. Jele: \(\{x\}\).

Az \(f : \mathbb{R} \to \mathbb{R} ; x \mapsto \{x\}\), vagy másfélebben \(y = \{x\} = x - \lfloor x \rfloor\) függvényt törtrész-függvénynek nevezzük.
Itt is célszerű konkrét példákon érzékelhetni, hogy például nem feltétlen a tizedestört törtrésze a törtrész-függvény értéke.

Például \(\{2.35\} = 0.35 \), hiszen \(2.35 - 2 = 0.35 \), de \(\{-3.7\} \neq -0.7 \), mert \(\{-3.7\} = -3.7 - (-4) = 0.3 \).

Ezen belül meg kell vizsgálnunk a szakadási helyeket is.

A korábbi függvénytulajdonságokhoz tárult a periodicitás és a korlátosság. A grafikon elemzése során mutathatjuk meg, hogy az értékkészlet a \([0;1[\) balról zárt, jobbról nyílt intervallum.

1. Előjel-függvény (szignum függvény)

A matematikai kutatásokban nagyon gyakran használt fogalom. A közoktatás matematika tananyagában nem szereplő tananyag. (Legfeljebb emelt szintű érettségi, illetve fakultáció jön elő.)

Ennek ellenére, a teljesség – és az érdekkesség – kedvéért célszerű bemutatni és elemezni ezt az elemi függvényt is.

\[f : R^+ \cup \{0\} \to R, \; x \mapsto \sqrt{x} \]

Szintén a grafikonról olvasható le, hogy monoton növekvő, korlátos, van szélsőértéke, páratlan függvény, nem folytonos.

1. Másodfokú függvény

Az \(f : R \to R ; x \mapsto ax^2 + bx + c \) függvényt másodfokú függvénynek nevezzük, ahol a, b, c \(\in \mathbb{R} \) és a \(\neq 0 \).
Rendszerszemlélet a matematika tanításában

Ez a fogalom illeszkedik a hatványozás és a másodfokú egyenletek fogalomrendszerébe, továbbá több fizikai fogalomrendszernek is eleme.

Mindenképpen szükséges az a (a főegyüttható) elemzése, illetve a parabola tengelyével való kapcsolatának megmutatása. Arra is fel kell hívni a figyelmet, hogy a = 0 esetén a másodfokú függvény lineáris függvénybe megy át, függően a b, c értékétől.

A tengelypont – teljes négyzet téglalap történő meghatározása a szélsőérték megállapításához, és a másodfokú egyenlet megoldásához is elengedhetetlen.

A másodfokú függvények tanításakor már sok függvényvizsgálati szempontot alkalmazhatunk, és nem csupán a grafikonról való leolvasással.

Így vizsgáljuk az értelmezési tartományt, az értékkészletet, a monotonitást, a szélsőértéket, a paritást, a periodicitást, a korlátosságot, a konvexitást, a zérushelyet és a tengelymetszeteket.

1. A négyzetgyökfüggvény

A fogalmat már általános iskolában bevezetjük, amikor valós számok négyzetgyökét kell meghatározni, például a Pitagorasz-tétel alkalmazásakor.

A középiskolai oktatásban tudjuk beilleszteni a függvények fogalomrendszerébe egy újabb ismeretet, a függvény inverzén keresztül. Az egy-egyértelmű leképezéseknél már előkészítettük az inverz függvény fogalmát.

\[y = \sqrt[2]{x} \]

Az függvényt négyzetgyökfüggvénynek nevezzük.
Mindenképpen ki kell emelni, hogy az \(y = x^2 \) függvénynek nem létezik az inverze, mert nem kölcsönösen egyértelmű leképezés.

Amennyiben a nempozitív, vagy a nemnegatív valós számok halmazán tekintjük az \(y = x^2 \) függvényt (szűkitjük az értelmezési tartományt), akkor már létezik az inverze, mégpedig vagy az \(y = +\sqrt{x} \) vagy az

\[
\begin{cases}
 f : \mathbb{R}^+ \rightarrow \mathbb{R}, & x \mapsto \log_2 x
\end{cases}
\]

A fenti grafikonról szépen leolvasható minden inverzre jellemző tulajdonság:

Például a legfontosabbak:

\[\text{Df} \rightarrow \text{Rf csere, azonos értelmű monotonitás, az } y = x \text{ egyenesre való tükrözés.} \]

Megerősíthetjük azt a korábban tanult ismeretet is, hogy miért csak nemnegatív valós számoknak értelmezzük a négyzetgyököt. Tehát ennek a függvénynek a tárgyalása során is sok belső koncentrációs lehetőséget tudunk megvalósítani, és meg tudjuk mutatni a fogalomrendszer közti szoros összefüggést is.

1. Exponenciális függvény
A hatványozás általánosítása után, amikor tisztáztuk, hogy bármely pozitív valós szám felírható ax alakban, ahol a ∈ R⁺ és a ≠ 1, bevezethetjük az exponenciális függvény fogalmát.

Az \(f: \mathbb{R} \to \mathbb{R} ; x \mapsto ax \) függvényt exponenciális függvénynek nevezzük, ahol a ∈ R⁺.
A monotonitásnál – konkrét példákon keresztül – tisztáznunk kell az a szerepét. Ha \(a > 0 \) szigorúan monoton nő, ha \(a < 0 \) szigorúan csökken a függvény. Új ismeretként jelentkezik az \(y = 1^x \) formula, azaz az \(a = 1 \) esetén exponenciális lesz-e a függvény.

Mivel mind a hatványozás alapfogalmaiból, mind a függvény grafikonjából kiderül, hogy ez egy konstans függvény, így nem érvényesek rá az exponenciális függvény isméréi, holott ez speciális exponenciális függvény.

Ezt a logaritmusfüggvény bevezetésénél is hasznosítani tudjuk. Azt is célszerű megbeszélnünk a grafikon elemzése során, hogy attól, hogy egy függvény alulról korlátos, még nem biztos, hogy van szélsőértéke (abszolút, vagy lokális minimuma).

1. A logaritmus függvény

Miután megbeszéltük, hogy az exponenciális függvény vagy szigorúan monoton nő (\(a > 1 \)), vagy szigorúan monoton csökken (\(0 < a < 1 \)), bevezethetjük a logaritmusfüggvényt, mint az exponenciális függvény inverzét. Természetesen, ehhez szükséges a logaritmus (mint hatványkitevő) értelmezése.
Rendszerszemlélet a matematika tanításában.

\[
y = a^x \\
(0 < a < 1)
\]

\[
y = \log_a x \\
(a < 1)
\]

\[
y = a^x \\
(a > 1)
\]
Itt hivatkozhatunk arra is, hogy az \(y = ax \) – ben az \(a \neq 1 \) feltétel miért szükséges. (Miért nem értelmezzük az \(y = \log_1 x \) „függvényt”, illetve \(y = 1x \) inverzének grafikonja az \(y \) tengellyel párhuzamos egyenes lenne, ami nem függvény.

Az \(f: R^+ \rightarrow R ; x \mapsto \log_a x \) függvényt logaritmusfüggvénynek nevezzük, ahol \(a \in R^+ \) és \(a \neq 1 \).

Mint minden inverznél itt is célszerű megmutatni az értelmezési tartomány – értékkészlet „cserét”, a monotonitás „megmaradását”, valamint az \(y = x \) egyenesre vonatkozó tükrözést.

Mindkét függvénynél újabb vizsgálati szempont kerül előtérbe, nevezetesen az aszimptota fogalma.

1. A trigonometrikus függvények

A szinusz-, a koszinusz-, a tangens- és a kotangensfüggvény tartozik ebbe a témakörbe. A hegyesszögek szögfüggvényeinek szemléletes bevezetése után (arányok a derékszögű háromszögben), tárgyaljuk a szögfüggvények általánosítását (mint az egységvektor merőleges vetületeit), amiből közvetlenül levezethetők az \(y = \sin x \), \(y = \cos x \), \(y = \tan x \), \(y = \cot x \) függvények.

Az \(f: \mathbb{R} \rightarrow R ; x \mapsto \sin x \) szinuszfüggvény általánosítását és ábrázolását mutatjuk meg a következő ábrán. A többi szögfüggvénynél is ehhez hasonlóan hívjuk segítségül az egységvektor elforgatottjainak vetületeit.
Itt is elengedhetetlen a belső koncentráció hangsúlyozása.

(Kapcsolat a vektorokkal, a vetületekkel, a forgásszögekkel, a radiánal stb.)

Vizsgálati szempontból új elemként jelentkezik a periodicitás, ha esetleg a törtrész függvényt még nem tanulták korábban.

Más elemi függvényt nem tanítunk a közoktatásban. Viszont, amikor a trigonometrikus függvények tanítását befejeztük, szükséges egy szintetizálás, ami a függvények tulajdonságainak vizsgálatát mutatja be. Ez a szint már túlmutat a tulajdonságok ábrákról való leolvasásán, pontos értelmezést kell adnunk, amit matematikai szimbólumokkal is rögzíthetünk.

A következő példán a konvexitást és a konkávitást mutatjuk meg. (A többi tulajdonság matematikailag pontos tárgyalása a Hajdu-féle tankönyvcsalád 12. osztályos tankönyvében megtalálható.)

Az f valós változós valós értékű függvény értelmezési tartománya egy intervallumán alulról (gyengén) konvexnek nevezzük, ha az adott intervallum bármely egymástól különböző x_1 és x_2 pontjaira teljesül, hogy

\[
 f\left(\frac{x_1 + x_2}{2}\right) \leq \frac{f(x_1) + f(x_2)}{2}
\]

(1.42)
Ugyanilyen feltételekkel alulról (gyengén) konkáv, ha

\[
\frac{f\left(\frac{x_1 + x_2}{2}\right)}{2} \geq \frac{f(x_1) + f(x_2)}{2}
\]

(1.43)
Fedeztessük fel a tanulókkal, hogy számtani közepek függvényértéke és a függvényértékek számtani közepe között kerestünk összefüggést. Ez az ismeret már olyan magas szintű, olyan sok absztrakciót és általánosítást feltételez, hogy még a jobb képességű középiskolai tanulóknak is csak erős szemléletéssel tanítható.

1. A függvénytranszformációk

Bár a fogalomrendszer végére tettük ezt az ismeretet, de a tanítása közvetlenül az egyes elemi függvények után történik.

Külön ki kell térnünk a változó és az érték transzformációira, és ki kell alakítani azt az algoritmust, amivel az elemi függvények grafikonjából eljutunk az összetett függvények grafikonjához.

Például az $y = |2x - 3|$ egyenlettel adott függvény ábrázolásának transzformációs lépései (Df = R ; Rf = R):

1. Átalakítás:

\[
x = |2x - 3| = 2x - 3 = 2 \left(x - \frac{3}{2} \right) = 2 \cdot \left| x - \frac{3}{2} \right|
\]

(1.44)

1. Az $y = |x|$ ábrázolása,
A függvényekkel kapcsolatos további ismeretek (határérték, folytonosság, deriválás stb.) nem képezik a közoktatás tárgyát, de a függvények fogalomrendszeréhez szervesen hozzájárulnak.

Végignézve a függvények fogalomrendszerén, látható, hogy 8–10 évfolyamot is átfog egy ilyen szerteágazó, minden más fogalomrendszerrel kapcsolatban lévő, sokrétűen alkalmazható rendszer. Az egyéb ismeretanyag bővülésével bővíthető tovább a függvények ismeretrendsze is. Így jutunk el az általános iskola előkészítő szakaszától a középiskolai függvényvizsgálatíknál ismétlődő függvénytanítását.

Éppen ez a hosszú idő teszi szükségessé a tanár részéről a rendszerben való gondolkodást, továbbá azt, hogy mindig tudatosan építse fel óráit, az új fogalom kialakítása, illetve annak a rendszerbe történő integrálódását segítségével. A függvényekkel kapcsolatos további ismeretek ismertetését az általános iskola előkészítő szakaszától a középiskolai függvényvizsgálatokig, amivel felkészítheti a közoktatásban a függvények tanítását.

Az egyéb ismeretanyag bővülésével bővíthető tovább a függvények fogalomrendsze is. Így jutunk el az általános iskola előkészítő szakaszától a középiskolai függvényvizsgálatíknál ismétlődő függvénytanítását.

Éppen ez a hosszú idő teszi szükségessé a tanár részéről a rendszerben való gondolkodást, továbbá azt, hogy mindig tudatosan építse fel óráit, az új fogalom kialakítása, illetve annak a rendszerbe történő integrálódását segítségével. A függvényekkel kapcsolatos további ismeretek ismertetését az általános iskola előkészítő szakaszától a középiskolai függvényvizsgálatokig, amivel felkészítheti a közoktatásban a függvények tanítását.

A függvények fogalomrendszerének szerves része a sorozatok rendszer. Számos specifikum miatt mégis célszerű külön egységként kezelni. Más a megfelelési mód, számos tulajdonsában, alkalmazásban, külső és belső koncentrációiban különbözik a klaszifikus függvényektől, és nagyon sokféle olyan sorozatot tudunk képzelni, amelyek nem számsorozatokat. (Ábrasorozat, betűsorozat, transzformációk sorozata, részhalmazok sorozata stb.)

Mindegyiknek megvannak a maga jelentősége és funkciója. Az egyes témakörök tanításánál szívesen használjuk a sorozatokat, akár motivációs szándékkal, akár az új fogalom kialakítását, illetve annak a rendszerbe történő integrálódását segítségével. A továbbiakban mi a valós számsorozatokkal foglalkozunk.

Valós számsorozatnak nevezünk minden olyan függvényt, amelynek értelmezési tartománya a természetes számok halmazának egy részhalmaza, értékészlete a valós számok halmazának egy részhalmaza.

Megfelelő példákon keresztül fedeztetjük fel a definíciót:

Például:

Adjuk meg azokat a természetes számokat, amelyek 4-gyel osztva 3-at adnak maradékul.

\[1 \mapsto 3 = a_1 ; 2 \mapsto 7 = a_2 ; 3 \mapsto 11 = a_3 ; \ldots ; n \mapsto 4n - 1 = a_n\]

Az ilyen jellegű példákkal már egészen korán – kisiskolás korban – élő tudjuk készíteni a sorozatok fogalmát. Továbbá némi általánosítás után – szerves kapcsolódvá az algebra fogalomrendszeréhez – bizonyos számok általános alakját is fel tudjuk írni.

Például:

A páratlan számok általános alakja: \(a_n = 2n - 1\), esetleg \(ak = 2k + 1\), vagy a 3-mal osztható számok általános alakja: \(an = 3(n - 1)\), esetleg \(ak = 3k\).

(Attól függően, hogy \(n \in \mathbb{N}_+\), vagy \(k \in \mathbb{N}\).)

Ezek felirásokkal szép kapcsolat mutatható meg a számelmélettel, illetve a maradékosztályokkal.

Ezek után nézzük a sorozatok fogalomrendszerét.
1. Halmaz, elem, eleme
2. Alaphalmaz, részhalmaz
3. Értelmezési tartomány, értékkészlet
4. Descartes szorzat, reláció

Ezeket az ismereteket a fejezet elején értelmeztük.

5. Véges sorozat, végtelen sorozat

A sorozatok definíciója az előző oldalon olvasható. Ott azért hangsúlyoztuk a „részhalmaza” kifejezéseket, hogy a definíció mindkét sorozatra igaz legyen, sőt olyan esetben is, ahol bizonyos n értékre (véges sok n-re) a sorozat nincs értelmezve.

Példa:

\[a_n = \frac{1}{(n-1)(n-2)} \]

az általános taggal adott sorozatban \(n \neq 1 \) és \(n \neq 2 \) teljesül, tehát az értelmezési tartomány: \(n \in \mathbb{N} \) és \(n > 2 \).

A végtelen sorozatoknál utalunk kell a korábban tanult halmazok számoságára is. Egy halmazt megszámíthatóan végezsenne nevezünk, ha ekvivalens a természetes számok halmazával, azaz elemei sorozatból rendezhetők.

A másik fontos ismeret, ami a sorozatokat megkülönbözteti a függvényektől (legalábbis a valós változós valós értékű függvényektől) az a grafikon. Míg az általunk tárgyalt függvények grafikonja (vagy annak része) folytonos vonallal ábrázolható, addig a sorozatok grafikonja (éppen az értelmezési tartomány miatt) diszkrét pontokból áll. Ezek a diszkrét pontok írásban egy jól meghatározott görbére. (A továbbiakban végtelen valós számsorozatokkal foglalkozunk.)

1. A sorozatok megadása

Képlettel, táblázattal, grafikonnal, rekurzív módon, utasítással.

Például a pozitív páros számok sorozatának megadási módjai:

1. \((a_n) = (2n) , n \in \mathbb{N} \) és \(n > 0 \).

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>..</th>
</tr>
</thead>
<tbody>
<tr>
<td>2n</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>..</td>
</tr>
</tbody>
</table>

1. Az előző értéktáblázat értékpárjait ábrázoljuk derékszögű koordinátarendszerben. A pontok írásban az \(y = 2x \) egyenesre.

2. \(a_1 = 2 ; an = 2 \cdot an-1 \) (Rekurzív megadási mód.)

3. A sorozat első eleme 2, és minden további elemét megkapjuk, ha az őt megelőzőt szorozzuk 2-vel. (Vagy az előző elemhez 2-t adunk.)

Bár a képlettel való megadás a leggyakoribb, de szerencsés mindegyiket alkalmazni és megmutatni a köztük levő ekvivalenciát.

1. Sorozatok jelölése
Az általános tag zárójelezésével jelöljük azt, amikor a sorozatról beszélünk (halmaz), és zárójel nélkül jelöljük az általános tagot.

Az an sorozat jele: \{ an \}, vagy (an) , illetve n-edik tagjának (elemének) a jele an . Ezzel is utalunk a sorozat halmaz eredetére, és az „eleme” axiómára.

1. A sorozatok tulajdonságai

A középiskolai oktatásban – mivel a tanulók matematikai előképzettsége hiányos – csak néhány tulajdonságot elemzünk, és ezeket is csak konkrét példákon keresztül. Általában olyan tulajdonságokat tárgyalunk, amelyek alkalmazása egyéb matematikai ismeretekhez szükséges.

Az \((an) \) valós számsorozatot monoton csökkenőnek nevezzük, ha \(an \geq an+1 \) minden értelmezési tartománybeli \(n \)-re teljesül.

Ha \(an > an+1 \) , akkor szigorúan monoton csökkenő a sorozat.

Hasonlóan definiálható a monoton növekedés, illetve a szigorúan monoton növekedés is.

A korlátosság is egyszerűen szemléltethető tetszőleges konkrét sorozatokkal, akár grafikonnal, akár az elemek felsorolásával. Megfelelő példákkal megmutatjuk, hogy egy szigorúan monoton növekvő sorozathoz is találhatunk olyan \(K \) valós számot, amint nagyobb eleme nincs a sorozatnak (felülről korlátos), és a szigorúan monoton csökkenőhöz is található olyan \(k \) valós szám, amint kisebb eleme nincs a sorozatnak (alulról korlátos).

Példa:

\[
\begin{align*}
\alpha_n &= \left(\frac{n-1}{n} \right), \quad \text{a sorozat elemei: } 0, 1, 2, 3, 4, \ldots, K = 1, \\
\beta_n &= \left(\frac{1}{n} \right), \quad \text{a sorozat elemei: } 1, 2, 3, 4, \ldots, k = 0.
\end{align*}
\]

Megemlíthetjük a határérték ismerete nélkül is, hogy a sorozat nullsorozat.

A sorozatok határértékét legfeljebb kiegészítő anyagként, matematika fakultáció említhetjük meg, ott is csak szemléletesen, a határértékekre vonatkozó tétel nélkül. Elégséges pusztán a divergenciát és a konvergenciát érzékelteni néhány konkrét sorozaton keresztül.

A torlódási pontot nem tárgyaljuk a középfokú oktatásban. (Még akkor sem, ha nagyon szemléletesen megmutatható az értelme.)

1. A Fibonacci-sorozat

Már alsó tagozatban találkoznak a tanulók a Fibonacci-sorozattal. A pontos definíciót csak középiskolában adjuk meg.

Azt a valós számsorozatot, amelynél \(a_1 = 1 \); \(a_2 = 1 \) és \(a_n = a_{n-1} + a_{n-2} \) Fibonacci sorozatnak nevezzük.
Rendszeresemlélet a matematika tanításában

Például:

\[a_1 = 3 ; a_2 = 5 ; a_n = a_{n-1} + a_{n-2} \]

Ennek a sorozatnak a tagjai: 3 ; 5 ; 8 ; 13 ; 21 ; 34 ; …

A Fibonacci-sorozat nem törzsanyag a közoktatásban, viszont mind érdekessége – motiváló hatás – mind alkalmazhatósága miatt mindenképpen javasoljuk a tanítását. Nemkülönben azért is, mert sok olyan tulajdonsága van, ami a többi témakörrel szervesen összefügg.

Néhány ezen tulajdonságok közül:

1. Monoton növekvő minden \(n \in \mathbb{N}^+ \) ra
2. Alulról korlátos, alsó korlátja 1. (\(a_1 = a_2 = 1 \))
3. Felülről nem korlátos
4. A sorozat n-edik tagja 1-gyl nagyobb, mint az első (\(n - 2 \)) elem összege.

(Ezt konkrét vizsgálódás útján felfedezhetik a tanulók.)

1. an osztható 2-vel, ha \(n = 3k \) alakú. (Minden 3. eleme páros.)
2. an osztható 3-mal, ha \(n = 4k \) alakú. (Minden 4. eleme osztható 3-mal.)
3. an osztható 5-tel, ha \(n = 5k \) alakú. (Minden 5. eleme osztható 5-tel.)
4. an osztható 4-gyel, ha \(n = 6k \) alakú. (Minden 6. eleme osztható 4-gyel.)

További – oszthatósággal kapcsolatos – érdekességek keresését bízzuk a tanulókra.

1. Bármely \(n \)-nél nagyobb természetes számnak van többszöröse a Fibonacci sorozatban.

2. Szép kapcsolat mutatható meg a Pascal-háromszöggel is.

("Ferdén" összeadva a Pascal-háromszög elemeit, a Fibonacci-sorozat tagjait kapjuk.) Ezt önálló kutatómunkaként ajánlhatjuk tanulóinknak.

A felsorolt 8 tulajdonságon túl, még számos egyéb szabályosságot is találhatunk. Ez is alátámasztja azt a véleményünket, hogy törzsanyagként kellene tanítanunk mind az általános-, mind a középiskolában.

10. Számtani sorozat

Mind a matematikában, mind a gyakorlati életben egyik leggyakrabban használt sorozatfajta.

Az (an) valós számsorozatot számtani sorozatnak nevezzük, ha bármely tagjának (a 2.-től kezdve) és az előtte lévő tagnak a különbsége (differenciája) állandó.

Ez a definíció egyben a számtani sorozat képzési szabályát is mutatja. Egyszerűségénél és alkalmazhatóságánál fogyva már az általános iskolában kialakítható a fogalom. Viszont összetettségét mutatja az, hogy középiskolában is tudunk olyan feladatokat adni e témakörből, amelyeket még a jobb képességű tanulók is csak erős tanári segítséggel képesek megoldani.

Az indukciós lépéseken keresztül juthatunk el az általános tag felírásáig.

83

Created by XMLmind XSL-FO Converter.
$$a_1 = a_1 + 0 \cdot d \ ; \ a_2 = a_1 + 1 \cdot d \ ; \ a_3 = a_2 + d = a_1 + 2 \cdot d \ ; \ldots ;$$

$$a_n = a_{n-1} + d = a_1 + (n - 1) \cdot d$$

Amire itt fel kell hivni a figyelmet, az az indexben és a d szorzójaként szereplő n értékének azonossága.

Utalnunk kell az elnevezésre is, aminek kapcsán ismét megvalósíthatunk egy belső koncentrációt. A számtani (vagy aritmetikai) jellel azért kapta a sorozat, mert bármelyik eleme a tőle szimmetrikusan elhelyezkedőknek számtani közepé.

$$a_n = \frac{a_{n-k} + a_{n+k}}{2}$$

(1.47)

Kezdetben konkrét sorozatoknál ráirányíthatjuk a figyelmet az összefüggésre, megsejtejük a szabályt, megfogalmazatjuk pontosan, majd bizonyítjuk a tételt. (Ezt az utat még az általános iskolában is követhetjük.) A monotonitásra és a korlátosságra mindenképpen ki kell térnünk. Konkrét példákon keresztül a tanulók szinte maguktól rájönnek, hogy egy számtani sorozat csak akkor korlátos, ha azonos tagokból áll, azaz d = 0.

Ha d > 0, akkor a sorozat szigorúan monoton növekvő, és alulról korlátos, de ekkor nincs felső korlátja. (an+1 – an = d > 0, akkor an+1 > an.) Az alsó korlát: k = a1 is lehet.

Ha d < 0, akkor a sorozat szigorúan monoton csökkenő, alulról nem korlátos, de felülről korlátos. Ebben az esetben az a_1 = K lehet a felső korlát. (an+1 – an = d < 0, akkor an+1 < an.)

Ezzel a kis okfejtéssel arra akartuk felhívni a figyelmet, hogy a hagyományos a1, an, d, Sn meghatározásban túl a más vizsgálatokat is célszerű elvégezni – mintegy kapcsolatot teremtve más fogalomrendszerekkel.

11. A számtani sorozat első n tagjának összege

Először egy konkrét számtani sorozat konkrét számú tagjának összegét határozzuk meg – megemlékeztetve a Gauss-módszert – majd ezután általánosítunk.

Egy (an) számtani sorozat első n tagjának összege a következőképpen határozható meg:

$$S_n = \frac{a_1 + a_n}{2} \cdot n, \text{ illetve } (2) \quad S_n = \frac{2a_1 + (n-1)d_n}{2} \cdot n$$

(1.48)

Sn jelöli az első n elem összegét, a1 a sorozat első tagját, an a sorozat n-edik tagját, d a sorozat differenciáját.

A tételt akár már az általános iskola felső tagozatán is bizonyíthatjuk, de középiskolában mindenképpen javasoljuk a bizonyítás tanítását is. A fő hangsúly azonban a tétel alkalmazásán, a matematikai problémák megoldásán, és nem a tétel pontos bizonyításán van.

12. Mértani sorozat

A számtani sorozathoz hasonlóan nagyon sok helyen alkalmazhatjuk a mértani sorozatokkal kapcsolatos ismereteket is a gyakorlatban.

Elég csak a pénzügyekre, a kamatos kamatra, az amortizációra, az értékpapírokra, a hitelekre gondolni. Ezek az alkalmazási területek egyben azt is mutatják, hogy nem feltétlenül az egyes definíciók tételek pontos kimondása, bizonyítása a cél, bár ez sem elhanyagolható, hanem inkább a köznapi élet problémáinak megoldása. (Bár ez a matematika majdnem minden területére elmondható.)
Egy \((a_n) \) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan \(q \) valós szám, hogy a sorozatnak mindegyik tagja (a 2.-től kezdve) \(q \)-szorosa az űt megelőző tagnak:

\[
an = an-1 \cdot q
\]

Egyértelmű, hogy ennél a definícióról szükséges megadni az első elemet is ahhoz, hogy a sorozatot egyértelműen meghatározzuk. A \(q \) értéket a sorozat kvóciensének nevezzük.

Ezzel a definícióval nem zárjuk ki a mértani sorozatokból a csupa 0 elemből álló sorozatot sem. (A csupa 0 elemből álló sorozat kvóciense tetszőleges valós szám lehet.)

Egy másik definíció szerint, az \((a_n) \) valós számsorozat, mértani sorozat, ha (a 2.-tól kezdve) bármelyik elemének és az űt megelőzőnek a hányadosa (kvóciense) állandó.

Természetesen ez a definíció kizárja a 0; 0; 0; …; 0; … sorozatot a mértani sorozatok halmazából. (Megfelelő példákon keresztül meg kell mutatnunk a tanulóknak, hogy ha egy mértani sorozatnak valamelyik eleme 0, akkor legfeljebb egy nem 0 eleme lehet.)

 Például: \(a_1 = 5 \); \(q = 0 \); 5; 0; 0; 0; …)

Mivel ez a sorozat teljesen különbözik a többi mértani sorozattól, így ezzel a továbbiakban nem foglalkozunk. A tanítás során is csak a teljesség kedvéért említjük meg. (Elképzelhető, hogy valamelyik feladat megoldása éppen ilyen sorozatot eredményez.)

A definíciókból vezethetjük le az általános tag képletét is:

\[
a_1 = a_1 \cdot q^n \]

Miután meghatároztuk az általános tag képletét, megmutathatjuk, hogy miért nevezzük mértani sorozatnak ezt a valós számsorozatot.

A mértani sorozat bármely tagjának abszolútértéke mértani közepé a tőle szimmetrikusan elhelyezkedő elemeknek.

\[
\left| a_n \right| = \sqrt[n]{a_{n-k} \cdot a_{n+k}}
\]

(Az összefüggés az általános tag képletének felhasználásával a tanulók számára is könnyen bizonyítható. Önálló feldolgozása is javasolható.)

A matematikai pontosság megköveteli, hogy az an abszolútértékéről beszéljünk.

Ezt a következő konkrét példákkal szemléltethetjük:

1. \(a_1 = 1 \); \(q = 2 \); a sorozat: 1; 2; 4; 8; 16; 32; 64; …

\[
8 = \sqrt{4 \cdot 16} = \sqrt{2 \cdot 32} = \sqrt{1 \cdot 64}
\]

1. \(a_1 = 1 \); \(q = -2 \); a sorozat: 1; -2; 4; -8; 16; -32; 64; …
1. a₁ = −1; q = 2; a sorozat: −1; −2; −4; −8; −16; −32; −64; ...

A mértani sorozat értelmezése után célszerű néhány tulajdonságot elemezni, és összevetni azt a számtani sorozat megfelelő tulajdonságaival.

13. Tulajdonságok

1. Monotonitás

Ha q > 1 és a₁ > 0, akkor a sorozat szigorúan monoton nő.

Például: 2; 6; 18; 54; …

Ha q > 1, a₁ < 0, akkor a sorozat szigorúan monoton csökkenő.

Például: −2; −6; −18; −54; …

Ha q = 1, akkor a sorozat monoton csökkenő és monoton növekvő.

(Azons tagokból álló sorozat.)

Ha q < 0, akkor a sorozat nem monoton. Váltakozó előjelű.

Tehát míg a számtani sorozatról d > 0 esetén a₁-től függetlenül mindig szigorúan monoton növekvő sorozatot kapunk, (d < 0 esetén szigorúan monoton csökkenő), addig a mértani sorozatról az a₁-től (illetve bármelyik ai-től) és q-től függően mindegyik eset előfordulhat.

1. Korlátosság

Konkret példákkal céléster megmutatni a különbséget a két sorozat között.

A számtani sorozatról, ha d > 0, a sorozat − az a₁-től függetlenül − szigorúan monoton növekvő, alulról korlátos, felülről nem korlátos, ha d < 0, a sorozat szigorúan monoton csökkenő, felülről korlátos, alulról nem korlátos. Tehát a sorozat csak d = 0 esetén korlátos.

A mértani sorozatról q > 1 esetén a sorozat nem korlátos, de ha |q| < 1, akkor korlátos.

Például:

1.

\[a_1 = 1, \quad q = \frac{1}{2}, \quad a \text{ sorozat: } 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots \]
Felső korlát 1, alsó korlát 0. A sorozat szigorúan monoton csökkenő.

1.

\[
\begin{align*}
a_1 &= -1, \quad q = \frac{1}{2}, \quad \text{a sorozat: } -1, \quad -\frac{1}{2}, \quad -\frac{1}{4}, \quad -\frac{1}{8}, \quad -\frac{1}{16}. \\
\end{align*}
\]

1.

\[
\begin{align*}
a_1 &= 1, \quad q = -\frac{1}{2}, \quad \text{a sorozat: } -1, \quad -\frac{1}{2}, \quad \frac{1}{4}, \quad -\frac{1}{8}, \quad -\frac{1}{16}. \\
\end{align*}
\]

Felső korlát 0, alsó korlát – 1. A sorozat szigorúan monoton növekvő.

1.

\[
\begin{align*}
a_1 &= 1, \quad q = -\frac{1}{2}, \quad \text{a sorozat: } -1, \quad -\frac{1}{2}, \quad \frac{1}{4}, \quad -\frac{1}{8}, \quad -\frac{1}{16}. \\
\end{align*}
\]

Felső korlát 1, alsó korlát \(-\frac{1}{2}\). A sorozat nem monoton.

Az ilyen jellegű vizsgálatokkal sokkal alaposabban meg tudják ismerni a sorozatok jellemző sajátosságait, ami sokat segítség a későbbiek során a problémák megoldásában.

14. A mértani sorozat első n elemének összege

Ezt a tétele is a gyakorlati alkalmazhatóság miatt célszerű hangsúlyozottan tárgyalni.

A különböző tagokból álló \((a_n)\) mértani sorozat első n elemének az összege:

\[
S_n = a_1 \cdot \frac{q^n - 1}{q - 1} \tag{1.56}
\]

\(a_1\) a sorozat első eleme, \(q\) a sorozat kvóciense, \(q \neq 1\).

(Ennek bizonyítását önálló munkának ajánlhatjuk a jobb képességű tanulóinknak.)

Mindenképpen elemezünk kell, hogy miért hangsúlyoztuk a „különböző tagokat”. Egyrészt az azonos – nem 0 – tagokból álló sorozat kvóciense 1, és így \(q - 1 = 0\). Ebből adódóan a hányadosnak nincs értelme.

Másrészt, ha egy sorozat minden tagja \(a_1\), akkor az első n tag összegét – függetlenül attól, hogy számtani, vagy mértani sorozatnak nevezzük – az \(S_n = n \cdot a_1\) összefüggés fejezi ki.

(Például számtani sorozatként:)

87

Created by XMLmind XSL-FO Converter.
Jó belső koncentrációs lehetőség adódik a pozitív egész kitevőjű hatványok, az exponenciális függvény és a mértani sorozat kapcsolatának bemutatására.

15. Hatvány sorozata

Az $(an) = (an)$ sorozat olyan mértani sorozatnak felel meg, amelynek első eleme: $a_1 = a$, és a kvóciense: $q = a$.

Az $(an) = (an)$ sorozat tulajdonságai:

1. Ha $a > 1$, akkor a sorozat szigorúan monoton növekvő, alulról korlátos.
 Például: ha $a = 2$, akkor $2; 4; 8; 16; …$
 Megmutatható a kapcsolat az $y = ax$ exponenciális függvénnyel is, ha $a > 1$.

1. Ha $a = 1$, akkor a sorozat monoton növekvő, monoton csökkenő, korlátos.
 Például: $1; 1; 1; 1; …$

1. Ha $0 < a < 1$, akkor a sorozat szigorúan monoton csökkenő, korlátos.
 Például: ha $a = \frac{1}{3}$, akkor $\frac{1}{3}; \frac{1}{9}; \frac{1}{27}; \frac{1}{81}; …$

Keressünk kapcsolatot az $y = ax$ exponenciális függvénnyel, ha $0 < a < 1$.

1. Ha $–1 < a < 0$, akkor a sorozat nem monoton, váltakozó előjelű, korlátos.
 Például: ha $a = \frac{1}{2}$, akkor $\frac{1}{2}; \frac{1}{4}; \frac{1}{8}; \frac{1}{16}; \frac{1}{32}; …$

1. Ha $a = –1$, akkor a sorozat nem monoton, váltakozó előjelű, korlátos.

A sorozat: $–1; 1; –1; 1; –1; 1; …$

1. Ha $a < –1$, akkor a sorozat nem monoton, váltakozó előjelű, nem korlátos.
 Például: ha $a = –2$, akkor $–2; 4; –8; 16; –32; …$

1. Ha $a = 0$, akkor a sorozat minden eleme 0.

16. Kamatos kamatszámítás

Fontos kapcsolatot mutathatunk meg a százalékszámítással is ennek az ismeretnek a tanítása során. A gyakorlati életben leginkább felhasználható ismeret, ami a betétek hozamát, illetve az amortizáció kiszámítását teszi lehetővé. Mindeközben sok gyakorlati ismeretet is nyújthatunk a tanulóknak.
Rendszermélet a matematikatanításában

Például: mit jelent a „lekötött” betét, vagy miért nem amortizálódik 0-ra egy gép, és ezt hogyan kezelik egy cég leltárában, stb.

Az alaphelyzet:

Ha \(T_n \)-nel jelöljük az \(n \)-edik év végén felvehető összeget, \(T_0 \)-al az induló tőkét, \(p \)-vel a százaléklábat, \(n \)-nel az évek számát, akkor a pénzünk gyarapodása a következő képlet szerint történik:

\[
T_n = T_0 \left(1 + \frac{p}{100}\right)^n
\]

(1.58)

Természetesen nemcsak éves kamatok vannak, hanem havi, illetve heti és napi kamatok is. (Ezeknek a képleteit megtalálhatjuk a Hajdu-féle tankönyvcsalád 12. osztályos matematika könyvének az 59. oldalán)

A gyakorlati élethez kapcsolódva, szerencsés megmutatni, hogy a heti, vagy havi kamat kis százaléka éves szinten milyen veszélyt rejt.

Például havi 2 %-os kamatra felvett hitel után közel évi 27 %-os kamatot fizetünk. (Nem beszélve a THM-ről, azaz a teljes hitelmutatótól, ami minden járulékos költséget tartalmaz, és lényegesen nagyobb visszafizetési összeget jelent, mint az egyszerű kamatos kamatszámítási összeg. Ezekkel az ismeretekkel a vállalkozói életre is felkészíthetjük tanítványainkat.

Az amortizációnál a képlet használjuk.

Fontos a százalékszámításra való visszacsatolás. Nevezetesen: a 23 %-os növekedés 1,23-szoros értéket jelent.

\[
T_n = \left(1 - \frac{p}{100}\right)^n
\]

A 32 %-os csökkenés, pedig 0,68-szoros értéket. Ez az \(-\)-ból, illetve az

\[
\left(1 - \frac{p}{100}\right)
\]

-ból kiolvasható.

17. Végtelen geometriai sor

A sorokat – általánosan – nem tanítjuk a középfokú oktatásban, de már akár általános iskolában előkészítjük. (A végteken geometriai sor viszont emeltszintű követelmény a középiskolában.)

Személyesen – ábrákkal – megmutathatjuk, hogy hiába adunk össze végteken sok tagot, (még, ha formálisan nem is tudjuk ezt megtenni) lehet, hogy az összegük véges.
A kidolgozott mintapéldából látható a mértani sor értelmezése.

Ha az \(a_n = (a_1 \cdot q^{n-1}) \) végtelen mértani sorozat tagjainak összegét vesszük, akkor végtelen geometriai sor kapunk.

Megjegyzendő és tisztázandó, mert a tanulóknak nem érthető:

A mértani sorozat végtelen sok elemből áll, míg a sor a végtelen sok tag összegét jelenti. Tehát az egyik egy megszámlálhatóan végtelen halmaz, míg a másik egy pusztá szám, vagy egy szimbólum \((+\infty) \).

Néhány ábrával szépen szemléltethető a sorok összege. (Lásd például a Hajdu Sándor szerkesztésében megjelent Matematika 12. osztályos tankönyv 67. oldalát!)

A mértani sor nagy felhasználási lehetősége az is, hogy meg tudjuk mutatni a végtelen szakaszos tizedestört racionális szám jelleget.

Például elég megdöbbentő a tanulóknak, hogy

\[
\begin{align*}
1. \\
0,9 = 0 + \frac{9}{10} + \frac{9}{100} + \frac{9}{1000} + \frac{9}{10000} + \ldots
\end{align*}
\]

\(x = 0,99999 \ldots \)

\(10x = 9,99999 \ldots \)

Vonjuk ki az alsó egyenletből a felsőt, azt kapjuk, hogy:

\(9x = 9 \)

Ebből \(x = 1 \)

Ezáltal igazoltuk az állítást.

Ugyanez a bizonyítás sorokkal:

Az a1 kezdőtagú, q kvóciensű végtelen sorozat tagjainak össze, ha \(0 < q < 1 \), a következő képlettel adható meg:
Ha \(q \geq 1 \), vagy \(q \leq -1 \), akkor a sorok nincs véges összege. (Nem érvényes rá a felírt képlet.) Ezeket konkrét sorokkal szemléltethetjük.

\[
S = \frac{a_1}{1 - q}
\] \hspace{1cm} (1.61)

1. Ezek után nézzük a

\[
0, 9 = 0 + \frac{9}{10} + \frac{9}{100} + \frac{9}{1000} + \frac{9}{10000} + \ldots
\] \hspace{1cm} (1.62)

\[
a_1 = \frac{9}{10}, \quad q = \frac{1}{10}
\] \hspace{1cm} (1.63)

(Ugyanis a sorozat tagjainak összegéről van szó.)

Az összeg:

\[
S = \frac{\frac{9}{10}}{1 - \frac{1}{10}} = \frac{\frac{9}{10}}{\frac{9}{10}} = 1
\]

Mindkét eljárás felhasználható bármilyen végtelen szakaszos tízedestört törtalakban (alakban) történő felírásához.
Rendszerszemlélet a matematika tanításában

Mint az elmondottakból kiderül a geometriai sort csak érzékeltetjük, konkrét példákon mutatjuk meg alkalmazási lehetőségét, de a rá vonatkozó tételeket nem tanítjuk a középiskolában.

\[
\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \ldots
\]

Egyébként az összegre vonatkozó összefüggés kapcsolható a számrendszerekhez (nevezetesen a 2-es számrendszerhez) is.

\[
0,11111\ldots = 0 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \ldots + \frac{1}{2^n} + \ldots = 1
\]

Az itt felírt tört a kettes számrendszerben felírt „végtelen kettedes törteket” jelent.

17. Nevezetes összegek

A számtoni sorozatok összegképletét felhasználva bizonyíthatunk néhány olyan tételt, amit más területeken – például a térfogatszámítástól – használtunk, továbbá alkalmazhatjuk a korábban csak említett teljes indukciós bizonyítást. (Lásd a számfogalom kialakításánál a Peano-féle axióma-rendszert.) Ezek az összegek véges sok tagot tartalmaznak, de bármilyen nagy n természetes számra igazak.

Ezeket az összefüggéseket az algebrai kifejezésekkel már tárgyalunk. Itt a sorozatokkal való kapcsolatot mutatjuk meg.

A tételeket nem bizonyíthatjuk a középfokú oktatásban, de a korrekt, teljes indukciós bizonyítás megtalálható a Hajdu-féle tankönyvcsalád 12. osztályos tankönyvének a Sorozatok című fejezetében. Ezen tételek többsége kiegészítő anyagként szerepel a középiskolában.

1. Az első n pozitív természetes szám összege:

\[
S_n = \frac{n(n+1)}{2}
\]

Bizonyítása a számtoni sorozat összegképletével és teljes indukcióval.

1. Az első n pozitív páratlan természetes szám összege:

\[S_n = n^2\]

Bizonyítás a számtoni sorozat összegképletével és teljes indukcióval.

1. Az első n pozitív páros természetes szám összege:

\[S_n = n(n+1)\]

Bizonyítás a számtoni sorozat összegképletével és teljes indukcióval.

1. Az első n pozitív természetes szám négyzetének összege:
Az első néhány tagig konkrétan kiszámoljuk az összeget, megsejtjük az összefüggést, majd teljes indukcióval igazoljuk.

1. Az első n pozitív természetes szám köbének összege:

\[S_n = \frac{n(n+1)(2n+1)}{6} \] \hspace{1cm} (1.66)

Néhány tag esetén kiszámoljuk az összeget, megsejtjük az összefüggést, és teljes indukcióval igazoljuk.

1. Határozzuk meg a következő összeget:

\[S_n = 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \ldots + n \cdot (n + 1) \]

Az \(n \cdot (n + 1) = n^2 + n \) átalakítás felhasználásával a bizonyítás visszavezethető az előző tételekre. (4); (1)).

(További érdekes feladatok találhatók a Hajdu-féle tankönyvcsalád 12. osztályos tankönyvének 76. oldalán.)

A relációk, függvények, sorozatok fogalomrendszere beépül a matematika minden témakörének fogalomrendszereibe. Ez segítheti újabb fogalmak kialakulását, illetve más fogalmak integrálódását az adott terület fogalomrendszerébe. Ebből adódóan kellő súlyt kell helyezni minden esetben meg kell mutatni a külső és belső koncentrációs lehetőségeket.

A relációk, függvények sorozatok fogalmait, és egyben eredményeit is a többi témakör fogalomrendszereınek.

Kulcsszavak

Descartes szorzat, reláció
a reláció típusai, tulajdonságai
a függvény
a függvények tulajdonságai
függvényvizsgálati szempontok, módszerek
speciális függvények
grafikonok
a sorozatok
a sorozatok tulajdonságai
speciális sorozatok
kamatos kamatszámítás
amortizációs képlet
a végtelen geometriai sor és összege
végtelen szakaszos tizedestört tört alakja
nevezetes véges összegek

24. Kérdések, feladatok:

1. Válasszon a Hajdu-féle tankönyvcsaládból összetett függvényeket, rajzolja meg grafikonjukat, majd elemezze őket a fejezetben megadott szempontok alapján!

2. Gyűjtsön gyakorlati példákat a hitelek kezelésére, illetve az amortizációra, majd adj meg a probléma matematikai modelljét!

3. Keressen gyakorlati példákat számábrá-, mértani- és Fibonacci-sorozatokra, vizsgálja meg a sorozatok tulajdonságait!

4. Konkrét végőtlen szakaszos tizedestörtek átalakításával mutassa meg a kapcsolatot a végtelen geometriai sorral!

25. Kötelező irodalom:

1. Dr. Hajdu Sándor szerkesztésében: Matematika 5-12. tankönyvek
Műszaki Könyvkiadó, Budapest, 2004-2010

2. Dr. Czeglédy István: Matematika tantárgypedagógia II. főiskolai jegyzet
Bessenyei Kiadó Nyíregyháza, 2004

26. Ajánlott irodalom:

1. Denkinger Géza: Analízis
Tankönyvkiadó, Budapest, 1989

2. Ju. A. Srejder: Egyenlőség, hasonlóság, rendezés
Gondolat Kiadó, Budapest, 1975

VI. A szöveges feladatok ismeretrendszer

A szöveges feladatok megoldását a „hagyományos szakmódszertan” az egyenlethez köti, ebből adódóan az algebrai egyenleteken, egyenletrendszerekben belül tárgyalja. Ez ma már általános iskolában sem indokolt, hiszen több olyan témakör van, ami kevésbé kapcsolódik az algebrai egyenletekhez, egyenlőtlenségekhez, egyenletrendszerekhez. Elég csak halmozelméleti, matematikai logikai, számelméleti, geometriai stb. szöveges feladatokra gondolni. Ráadásul az algebrai egyenlettel történő megoldás is helyettesíthető mással. (Például. Aritmetikai megoldással, következtetéssel, grafikus megoldással stb.)

Ebben a fejezetben egy általános – minden témakörre érvényes – megoldási módot adunk a szöveges feladatokra, és ezen túl megmutatjuk az egyes területek specifikumait.

A tanulók általában azt a feladatot kedvelik, amelyben bizonyos, jól bevált recepteket kell alkalmazni, s nem kell a köznapi szöveget a matematika nyelvére lefordítani.

A kompetencia alapú oktatásnál szóltunk az értő olvasásról, illetve az ezzel kapcsolatos tanulói nehézségekről. Valójában sokkal nehezebb egy szöveges feladatot értelmezni, mint a megoldási tervet végrehajtani.
Pólya György is az úgynevezett fordítási nehézségekben látja a szöveges feladatok tanulóink körében tapasztalt népszerűlenségét, pedig itt mutatható meg tisztán a matematikatanítás célja, a gyakorlati alkalmazhatóság.

Pólya György szerint, ha egyenlettel oldunk meg egy szöveges feladatot, az azt jelenti, hogy „…matematikai szimbólumokkal kell kifejezni egy szavakban kifejezett kikötést, közönséges nyelvről kell lefordítani a matematikai kifejezések nyelvére. Azok a nehézségek, amelyek az egyenletek felállításakor felmerülnek, fordítási nehézségek.”

(Pólya György: A gondolkodás iskolája.)

Természetesen ezek a fordítási nehézségek nem csak az egyenlettel történő megoldás esetén vetődnek fel.

A. Revuz írja a Modern matematika, élő matematika című munkájában:

„…A köznapi szavak jelentése általában elég határozatlan. … A matematika ki akarja küszöbölni a kétértelműséget. Ki is küszöböli, de cserébe elveszti az érintkezés könnyedségét. Minél gazdagabb és szabadabb egy információ, annál nehezebb az átültetése.”

Mindkét megközelítési mód – akár egyenlettel, akár más módon oldjuk meg a feladatokat – az értő olvasást helyezi a középpontba. Ha fejlett a tanuló értő olvasási képessége, akkor nincsenek fordítási nehézségei, nincsenek értelmezési problémái.

Az egy másik dolog, hogy ha nincsenek meg a megoldáshoz szükséges matematikai alapok, akkor ez értelmezésbeli problémákat jelent. Tehát mindig meg kell gyözödnünk arról, hogy mi okozza a fordítási nehézségeket.

Bármennyire is népszerűtlen tanulóink körében a szöveges feladat, mindenbéppen tanítanunk kell, hiszen ezen keresztül tudjuk megvalósítani a matematikatanítás fő célkitűzéseit. Nevezetesen ezen keresztül tudjuk kialakítani a társadalmi beilleszkedéshez nélkülözhetetlen pszichés tulajdonságok összességét.

27. Az ismeretek rendszere

A szöveges feladatokban szereplő állítások.

1. Explicit állítások

Másképpen nyílt állítások, azaz olyan adatok, mennyiségek, cselekvések, műveletek, amelyek a szövegből közvetlenül kivehetők.

Ilyen például:

1. a számadatokat közlő állítások,
2. a mennyiségekkel végrehajtható műveletekre vonatkozó utalások,
3. a mennyiségek közti kapcsolatokat kifejező állítások,
4. konkret fizikai, kémiai, gyakorlati folyamatokat, tevékenységeket elénk vetítő állítások,
5. a műveletek eredményére utaló állítások,
6. algoritmusok,
7. feltételek, következmények.

2. Implicit állítások (rejtett állítások)

Ezek azok, amelyek a szövegből közvetlenül nem olvashatók ki, amelyeket a tanulóknak, a meglévő ismereteket felszínre hozva kell kitalálniuk.

1. Funkcionális összefüggések (állítások logikai értéke, halmaz, részhalmaz, eleme, relációk, arányosság, szerkeszthatóság stb.).
2. Algebrai, geometriai, kombinatorikai, fizikai, kémiai ismereteket feltételező állítások (transzformációk, hasonlóság, szögfüggvények, szabadesés, oldatok keverése, sorrendezés stb.).

3. A feladat megoldását segítő állítások (egyenletfejlíráshoz, grafikonhoz, kiválasztáshoz stb.) szükséges állítások, amelyek szintén nincsenek benne a szövegben, de a megoldáshoz nélkülözhetetlenek.

4. Ok-okozati összefüggéseket kifejező állítások.

Megállapíthatjuk, hogy az explicit állítások – konkrétiséguk miatt – nem okozhatnak „fordítási” gondot a megoldásban, sokkal inkább implicit állítások, hiszen ezek alapján tervezzük meg a feladat megoldását. Az implicit állítások kibontását nehezíti az, ha a tanulók matematikai ismeretszintje nem megfelelő.

3. Szövege feladatok megoldásának menete

Ezek a lépések követik a Pólya-féle megoldási menetet, csak lényegesen részletesebbek, aprólékosabbak. Amennyiben a tanulóinkat rá tudjuk venni ezeknek a fázisoknak a betartására, lényegesen hatékonyabb lesz a munkájuk, és kevésbé lesz népszerűtlen a szöveges feladat.

A fentebb leírt lépések a szöveges feladatok megoldásának általános lépései. A következőkben azokat a specifikumokat elemezzük, amelyek a különböző témakörök szöveges feladatainak megoldását jellemzik.

4. Halmazok, logika

Hajdu Sándor: Matematika 10. tankönyvből való

Az A halmaz elemeinek száma 14, a B halmaz elemeinek száma 11. Az A U B halmaznak 22 eleme van.

A feladat megértése (Ez a korábban közölt megoldási menet a), b), c) pontjának felel meg.)

Explicit állítások: 14, 11, 22 elem; A U B, A ∩ B, A \ B, B \ A, A △ B, A x B ..

Implicit állítások: hogyan értelmezzük ezen halmazműveleteket, továbbá milyen összefüggés van ezen műveletek között. (Hogyan tudjuk ezeket az ismert A U B; A; B halmazokkal kifejezni.)

A megoldás megtervezése: (Ez a d), e) pontokhoz köthető.) Ha az |A| és a |B| összegéből kivonjuk az |A U B|-t, akkor az |A ∩ B|-t kapjuk.

A sejtés itt esetleg a két halmaz metszetének a számosságára vonatkozik.

A matematikai kivitelezés, megoldás

A halmazábra felrajzolása után beírjuk a diszjunkt részhalmazokba az elemek számát, amelyekből a kérdésekre válaszolhatunk.

Az A x B Descartes-szorzatnál ügyelnünk kell arra, hogy nem csak az A \ B, illetve a B \ A elemeiből képzett rendezett elempárok halmazát tekintjük, hanem a metszet elemeiből képzett rendezett elempárok halmazát is.

Ellenőrzés

Miután a megfelelő részhalmazokba beírtuk az elemek számát, összevetjük azt a kérdezett részhalmazok definíciójával, illetve azok elemeinek számával.

A diszkusszió esetén arra kell a figyelmet felhívunk, hogy ezen halmazok (A; B;A U B, A ∩ B, A \ B, B \ A, A △ B) elemeinek száma hogyan viszonyul egymáshoz.)

Ezzel a feladattal azt akartuk érzelmesíteni, hogy nem csupán az algebra témaköréhez kapcsolhatók a szöveges feladatok és nem biztos, hogy minden esetben egyenlettel lehet megoldani a szöveges feladatokat.

Viszont a szöveges feladatok megoldásának menete ilyen esetekben is nyomon követhető és követendő. Így szoktathatjuk rá a tanulókat a rendszerességre, a tervszerűségre, a tudatosságra.

Hasonló okféjtés mondható el a matematikai logikával kapcsolatos feladatok megoldására is. Ide többek közt, az állítások logikai értékének vizsgálata, az ok-okozati összefüggések feltárása, a feltétel-állítás szétválasztása,
tételek megfordítása, tagadása stb. tartozik. Túlzás nélkül állíthatjuk, hogy az ilyen típusú szöveges feladatok megoldása nehezebben a klasszikus algebrai feladatok megoldásánál. (Pontosan azért, mert szükségesek a matematikai alapok, – hiszen ezekre vonatkoznak az állítások – és a fejlett gondolkodást műveletek.)

1. A számfogalom kialakítása

Az alakiérték, helyiérték, hatványok, gyökök, törtek, műveletek, műveleti tulajdonságok témakörei tartoznak ehhez a területhez.

Például:

Tekintsük az $5 : 5 : 5 : 5$ műveletsort.

Hányféleképpen zárójelezhetjük a műveletsort úgy, hogy mindig más eredményt kapjunk?

Zárójelezzük úgy, hogy 1, hogy $\begin{array}{c}1 \\ 5 \end{array}$, hogy $\begin{array}{c}1 \\ 25 \end{array}$ legyen az eredmény!

Az explicit állítások: 5, és az ezekkel végzett osztások.

Az implicit állítások: műveletek sorrendje, zárójelek szerepe a műveletek sorrendjében, osztás egésszel, osztás törttel, szorzás törttel.

Ezen állítások feltárása után – esetleg néhány próbálkotással – jöhet az ötlet és a megoldás megtervezése. A műveletek sorrendjének és tulajdonságainak ismerete nélkül, természetesen az ellenőrzés nem végezhető el pontosan.

1. Számelmélet, diofantoszi egyenletek

Példaként nézzünk egy olyan példát, ami nem az oszthatósági szabályokhoz kötődik, viszont a diákok körében – éppen szokatlansága miatt – nem örvend nagy népszerűségnek.

Példa:

Mely n egész értékekre lesz egész a következő tört?

Explicit állítások: a kifejezésben látható betűk, számok, hatvány, tört.

Implicit állítások: Milyen a számáló és a nevező viszonya azon törteknél, amelyek értéke egész? Hogyan oszthatunk többitő kifejezésre? Hogyan alakítható át úgy a számáló, hogy egyszerűsítés után válaszolhassunk az eredeti kérdésre? Mikor nem változik a tört értéke? Mikor nincs értelmezve egy tört? Milyen azonosságok felhasználásával alakítható át a számáló?

Valójában ezek az implicit állítások – amiket kérdés formájában fogalmazunk meg – teszik nehézzé a feladat megoldását.

Az ötlet a megoldás tervének is alapja:

$$n^2 + 1 = n^2 - 1 + 2 = (n + 1)(n - 1) + 2$$

(1.68)
Rendszerszemlélet a matematika tanításában

\[
\frac{n^2 + 1}{n + 1} = \frac{n^2 - 1 + 2}{n + 1} = \frac{(n+1)(n-1)+2}{n+1} = (n-1) + \frac{2}{n+1}
\]

1.69

Megoldás:

Ez az összeg pontosan akkor lesz egész, ha a 2. tag egész.

\[
\frac{2}{n+1}
\]

A akkor, és csakis akkor egész, ha n + 1 osztója 2-nek.

Ekkor: n + 1 = ± 1; ± 2 . Innen adódik a megoldás.

Az ellenőrzés a kapott értékek eredeti kifejezésével történő visszahelyettesítésével valósítható meg.

1. Egyenletek, egyenletrendszerek, egyenlőtlenségek

Ezek a típusok tartoznak a klasszikus értelmelembe vett szöveges feladatok közé.

A feladattípusok: számjegyekkel, helyiértékekkel, törtekek, arányossággal, százalékszámítással, keveréssel, mozgással, munkavégzéssel, sorozatokkal, kamatos kamattal stb. kapcsolatos feladatok.

Ezek mindegyikének megoldási módjára is alkalmazhatók a korábban ismertetett megoldási lépések.

Ebben a fejezetben ezt nem tárgyaljuk. (Az ilyen típusú feladatok megoldásának elmélete megtalálható a Dr. Czeglédy István szerk. Matematika tantárgypedagógia I. főiskolai jegyzetben.)

1. Meghatározó (számításos) geometriai feladatok

Nagyon sokféle feladattípus tartozik ebbe a témakörbe. (Például: sokszögek kerületének, területének, oldalainak, szögeinek, átlóinak, testek felszínének, térerzetének, egyéb adatainak meghatározása stb.)

Nézzünk egy példát a Hajdu Sándor: Matematika 10. tankönyvből.

Egy deltoid szimmetriaátlója 6,3 cm hosszú, amelyet a 4 cm hosszúságú másik átló 16 : 5 arányban oszt két részre.

Explicit állítások: deltoid; 6,3 cm; 4 cm; 16 : 5 arány

Implicit állítások: a deltoid tulajdonságai, szimmetria átljának tulajdonságai, oldalak közti összefüggések, mit jelent a 16 : 5 arány, a deltoid kerületének, területének képlete, a deltoid szögei közti összefüggség, a derékszögű háromszög területe, Pitagorász tétele, szögfüggvények a derékszögű háromszögben.

Látható, hogy itt is lényegesen több az implicit állítás, ráadásul ezek zöme korábban tanult, más anyagrészekhez tartozó ismeret. Ez a tény azt sugallja, hogy az implicit állítások alapos elemzésén keresztül vezet az út a megoldás megtervezéséig.

A megoldás menetének a), b), c) lépését akkor tudjuk elvégezni, ha megfelelő rajzot készítsünk. Ez a következő két lépés feltétele is egyben, hiszen a jó rajz sok jó ötletet adhat.

Ha a szimmetriaátló két szakaszát 16x-szel és 5x-szel jelöljük, könnyen meghatározhatjuk a szakaszok hosszát. Ha pedig tudjuk, hogy a szimmetriaátló merőlegesen felezi a másik átlót, akkor a négy oldal és a négy derékszögű háromszög területének meghatározása egyértelmű.
A szögek meghatározásához már elég információ van birtokunkban, ha ismerjük, és tudjuk alkalmazni a megfelelő szögfüggvényeket.

Mint látható, itt a becsléstől eltekinthetünk. (Nincs funkcionális jelentősége. Legfeljebb az átlók és a szögek ismeretében korlátokat szabhatunk az oldalakra vonatkozóan.)

1. Szerkesztések

A szerkesztéses feladatoknál külön megvan az algoritmus, amelyeket ugyanúgy el kell sajátíttatnunk a tanulókkal, mint a szöveges feladatok megoldási lépéseit. A két megoldási mód között jól érzékelhető az analógia.

1) Az adatok felvétele – explicit állítások kigyűjtése.

2) Vázlat készítése – megoldottnak feltételezzük a feladatot, kész ábrát rajzolunk, belerajzolva az alakzat ismert és ismeretlen alkotórészeit, adatait. Ez a szöveges feladatoknál az adatok közti összefüggés megkeresésének fele meg.

Ezen túl felszínre kerülnek az implicit állítások is. Nevezetesen az, hogy milyen ismeretek és milyen összefüggések szükségesek az alakzat megszerkesztéséhez.

3) Tervkészítés – a vázlat elemzésével jutunk el az ötletektől a matematikai modellig, a szerkesztés lépéseinek meghatározásáig.

4) A szerkesztés végrehajtása egyben a matematikai kivitelezés, a megoldás.

1. A következő lépés a szerkesztés helyességének a bizonyítása. Itt vizsgáljuk meg, hogy az explicit és az implicit állításoknak megfelelően használtuk-e fel az adatokat, s minden összefüggés, amit a szerkesztés során alkalmaztuk megfelel-e a geometriai definícióknak, tételeknek.

2. A diszkusszió a szerkesztés elengedhetetlen lépése. Megvizsgáljuk, hogy az adatok, összefüggések változtatása hogyan befolyásolja a megoldást.

 Tehát elmondható, hogy a szerkesztéses feladatok megoldási menete teljesen analóg a szöveges feladatok megoldásának lépéseiivel.

1. Bizonyításos feladatok

Nagy súlyt kell helyezni ennek a témakörnek a tanítására, mert a gyakorlatban, a mindennapí érintkezésben leginkább ezt alkalmazzuk, ugyanakkor a tanulóktól nagyon távol áll az ilyen típusú feladat. Talán legnéhezebb számukra a feltétel és az állítás különválasztása. Ez ismét a gondolkodási műveletek fejlesztésének szükségességét vetíti elénk.

Például:

Bizonyítsuk be, hogy egy háromszög két csúcsa és a csúcsokból kiinduló magasságok talppontjai húrnégyszöget alkotnak.

Explicit állítások: (ezek az alapjai a feltételnek): háromszög, csúcsok, magasságvon, talppont, húrnégyszög. Az teljesen egyértelmű, ha ezekkel a fogalmakkal nem rendelkezik a tanuló, a tétel bizonyítása sem lesz sikeres.

Implicit állítások: Ezekből következtetünk a feltételre, az állításra és az adatok közötti ok-okozati összefüggésre. A magasságvon annak tulajdonságai, a húrnégyszög fogalma, tulajdonságai, Thalesz tétel.

Az állítások elemzése után nyilvánvaló, hogy olyan négyzöget kell keresnünk, amely köré kör írható, továbbá a háromszög két csúcsa és a két magasság talppontja ezen a körön van. Ez a feltételeknek megfelelően meg is valósítható. A két csúcs által meghatározott oldal főlé rajzolt Thalesz-körön lesz a négy csuszcspont.

Az itt leírt elemzésekből is nyomon követhetők a szöveges feladatok megoldásának lépései az adatok felvételéből, az ábra felvételén, és annak elemzésén keresztül a megoldási tervig, a terv végrehajtásáig, illetve a diszkusszióig. (Itt egy jó diszkussziós lépések számít az, ha a derékszögű háromszögre próbáljuk meg a tételt igazolni.)
Természetesen a bizonyításos feladatoknak ítt elemzett lépései, nemcsak a geometriára alkalmazhatók, hanem a többi témakör ilyen típusú feladataira is.

Szeretnénk, ha az olvasó a szöveges feladatok fogalomrendszeréről azt szűrné le, hogy nem receptet adunk a tanulóknak külön-külön minden egyes szöveges feladattípus megoldására (keveréses, mozgásos, munkavégzéses, logikai, számelméleti stb.), hanem egy olyan átfogó rendszert, amelyet minden témakör, minden fajta szöveges feladatának megoldásakor tud alkalmazni.

Kulcsszavak
explicit állítás
implicit állítás
megoldási algoritmusok
szöveges feladatok típusai
meghatározó jellegű feladatok
szerkesztéses feladatok
bizonyításos feladatok

28. Kérdések, feladatok:
1. Válasszon ki a Hajdu-féle tankönyvcsalád témaköreiből feladatokat, és elemezze azokat az explicit és az implicit állítások szemszögéből!

2. Válasszon ki a Hajdu-féle tankönyvcsalád geometriai témaköreiből egy-egy szerkesztéses, bizonyításos és meghatározó jellegű feladatot, és oldja meg módszeresen a jegyzetben tárgyalt módon!

29. Kötelező irodalom:
1. Dr. Hajdu Sándor szerkesztésében: Matematika 5-12. tankönyvek
Műszaki Könyvkiadó, Budapest, 2004-2010
2. Dr. Czeglédy István: Matematika tantárgypedagógia I - II. főiskolai jegyzet
Bessenyei Kiadó Nyíregyháza, 2004
3. Pólya György: A gondolkodás iskolája
Akkord Kiadó, Budapest, 2000

30. Ajánlott irodalom:
1. Pólya György: A problémamegoldás iskolája I – II.
Tankönyvkiadó, Budapest, 1967
2. Faragó László: Szöveges feladatok megoldása egyenlettel
Tankönyvkiadó, Budapest, 1969
Javaslat a tananyag feldolgozásának ütemezésére

31. A félév során 12 hétre tervezzen:
1. hét:
A halmazelmélet alapjai.

2. hét:
A matematikai logika alapjai.

3. hét:
A számfogalom kialakítása I. Egész számok.

4. hét:
A számfogalom kialakítása II. Valós számok.

5. hét:
A számelmélet alapjai.

6. hét:
Oszthatóság, diofantoszi egyenletek.

7. hét:
Nem tízes alapú számrendszerek.

8. hét:
Algebrai kifejezések, polinomok.

9. hét:
Algebrai egyenletek, egyenlőtlenségek, egyenletrendszerek.

10. hét:
Relációk, függvények.

11. hét:
Sorozatok.

12. hét:
Szöveges feladatok.

32. Záróvizsga tételek:

1) Sorolja fel a halmazelmélet fogalomrendszerét!
 Elemezze a matematika egyéb fogalomrendszereivel való kapcsolatát!

2) A matematikai logika szerepe a matematikai ismeretek elsajátításában.
 A pontos szaknyelv használatának jelentősége a matematikatanításban.

3) Adja meg a természetes számok fogalomrendszerét! Vonjon párhuzamota halmazelméleti megközelítés és a Peano-féle axiomatikus megközelítés között!

4) Az egész számok, a racionális számok és a valós számok halmaza.

5) Sorolja fel és elemezze a számelméleti alapok fogalomrendszerét!
6) Ismertesse a tízes számrendszerbeli oszthatósági szabályokat, és bizonyítsa a tételeket!

7) Építs fel a nem tízes alapú számrendszerek f ALOGOMrendszerét! Sorolja fel és igazolja az oszthatósági szabályokat a nem tízes alapú számrendszerben felírt számokra!

8) Az algebrai kifejezések és a polinomok f ALOGOMrendszeré.
Elemezze az algebrai kifejezések és az algebrai egyenletek kapcsolatát!

9) Ismertesse az algebrai egyenletek, egyenlőtlenségek, egyenletrendszerek f ALOGOMrendszerét, és az erre visszavezethető egyéb egyenletek, egyenlőtlenségek rendszerét!

10) A relációk, függvények f ALOGOMrendszerének felépítése.
Ismertesse a függvényvizsgálati szempontokat!

1. Ismertesse a szöveges feladatok megoldásának elméletét!